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RISK SIMULATOR

1. BBEOEHME

1.1, Aob6po rmo>xasoBars B nporpammy
Risk Simulator

he Risk Simulator is a Monte Carlo simulation, Forecasting, and Optimization
I software. The software is written in Microsoft NET C# and functions together with
Excel as an add-in. This software is also compatible and often used with the Real
Options Super Lattice Solver (SLS) software and Employee Stock Options Valuation Toolkit
(ESOV) software, also developed by Real Options Valuation, Inc. Note that although we
attempt to be thorough in this user manual, the manual is absolutely not a substitute for the
Training DVD, live training courses, and books written by the software’s creator (e.g., Dr.
Johnathan Mun’s Real Options Analysis, 2nd Edition, Wiley Finance, 2005; Modeling Risk:
Applying Monte Carlo Simulation, Real Options Analysis, Forecasting, and Optimization, 2nd
Edition, Wiley Finance, 2010; and Valuing Employee Stock Options (2004 FAS 123R), Wiley
Finance, 2004). Please visit our website at www.realoptionsvaluation.com for more information
about these items.

The Risk Simulator software has the following modules:

e Monte Catlo Simulation (runs parametric and nonparametric simulation of 42
probability distributions with different simulation profiles, truncated and correlated
simulations, customizable distributions, precision and error-controlled simulations, and
many other algorithms)

e FPorecasting (runs Box-Jenkins ARIMA, multiple regression, nonlinear extrapolation,
stochastic processes, and time-series analysis)

e Optimization Under Uncertainty (runs optimizations using discrete integer and
continuous variables for portfolio and project optimization with and without
simulation)

e Modeling and Analytical Tools (runs tornado, spider, and sensitivity analysis, as well as
bootstrap simulation, hypothesis testing, distributional fitting, etc.)

e ROV BizStats (over 130 business statistics and analytical models)

e ROV Decision Tree (decision tree models, Monte Catlo risk simulation on decision
trees, sensitivity analysis, scenario analysis, Bayesian joint and posterior probability
updating, expected value of information, MINIMAX, MAXIMIN, risk profiles)
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RISK SIMULATOR

Real Options SLS software is used for computing simple and complex options and includes the
ability to create customizable option models. This software has the following modules:

e Single Asset SLS (for solving abandonment, chooser, contraction, deferment, and
expansion options, as well as for solving customized options)

e  Multiple Asset and Multiple Phase SLS (for solving multiphase sequential options,
options with multiple underlying assets and phases, combination of multiphase
sequential with abandonment, chooser, contraction, deferment, expansion, and
switching options; it can also be used to solve customized options)

e Multinomial SLS (for solving trinomial mean-reverting options, quadranomial jump-
diffusion options, and pentanomial rainbow options)

e Excel Add-In Functions (for solving all the above options plus closed-form models
and customized options in an Excel-based environment)

1.2 TpeboBarma K yCTAHOBKE H IIPOLIEAYPAM

To install the software, follow the on-screen instructions. The minimum requirements for this
software are:

e Pentium IV processor or later (dual core recommended)

o  Windows XP, Vista, Windows 7, Windows 8, or later

e Microsoft Excel XP, 2003, 2007, 2010, or later

e Microsoft NET Framework 2.0 or later (versions 3.0, 3.5, and so forth)
e 500 MB free space

¢  2GB RAM minimum (2-4GB recommended)

e Administrative rights to install software

Most new computers come with Microsoft NET Framework 2.0/3.0 already installed.
However, if an error message pertaining to requiring .NET Framework occurs during the
installation of Risk Simulator, exit the installation. Then, install the relevant NET Framework
software included in the CD (choose your own language). Complete the .NET installation,
restart the computer, and then reinstall the Risk Simulator software.

There is a default 10-day trial license file that comes with the software. To obtain a full
corporate license, please contact  Real Options Valuation, Inc., at
admin@realoptionsvaluation.com ot call +1 (925) 271-4438, or visit our website at
ww.realoptionsvaluation.cons. Please visit this website and click on DOWNLOAD to obtain the
latest software release, or click on the FAQ link to obtain any updated information on licensing
or installation issues and fixes.

1.3 AnrrersupoBarxme

If you have installed the software and have purchased a full license to use the software, you will
need to e-mail us your Hardware ID so that we can generate a license file for you. Follow the
instructions below:
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e  Start Excel XP/2003/2007/2010, click on the License icon ot Risk Sinulator | L zcense
and copy down and e-mail your 11 to 20 digit and alphanumeric HARDWARE ID
that starts with the prefix “RS” (you can also select the Hardware ID and do a right-
click copy or click on the e-mail Hardware 1D link) to adwin@srealoptionsvalnation.con.
Once we have obtained this ID, a newly generated permanent license will be e-mailed
to you. Once you obtain this license file, simply save it to your hard drive (if it is a
zipped file, first unzip its contents and save them to your hard drive). Start Excel, click
on Risk Sinmlator | License or click on the License icon and click on Install License and
point to this new license file. Restart Excel and you are done. The entire process will
take less than a minute and you will be fully licensed.

e Once installation is complete, start Microsoft Excel and if the installation was
successful, you should see an additional “Risk Simulator” item on the menu bar in
Excel XP/2003 or under the new icon group in Excel 2007/2010, and a new icon bar
on Excel as seen in Figure 1.1. In addition, a splash screen will appear as seen in Figure
1.2, indicating that the software is functioning and loaded into Excel. Figure 1.3 also
shows the Risk Simulator toolbar. If these items exist in Excel, you are now ready to
start using the software. The remainder of this user manual provides step-by-step
instructions for using the software.

I G ooid TCompebbaity Motil » Mcrosoll Excel rom-eemmerciel vse T — — oo e

Eugelipsd  Fomuin Gty Review View  Dessloger | B c@odd

B O e

Qe
L

F] 24 FHCTEYMETS MCCAE SRR POBELENHE SSmrrbts

AGHUCN IR 200 Moy, Octotes 26, 200 I

Figure 1.1 — Risk Simulator Menu and Icon Bar in Excel 2007 /2010

Website:

www.realoptionsvaluation.com
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Figure 1.3 — Risk Simulator Icon Toolbars in Excel 2007/2010
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The following lists the main capabilities of Risk Simulator, where the highlighted items indicate
the latest additions to version 2011/2012.

1.4.1 General Capabilities

1.

10.
11.

Available in 11 languages—English, French, German, Italian, Japanese, Korean,
Portuguese, Russian, Spanish, Simplified Chinese, and Traditional Chinese.

ROV Decision Tree module is included in the latest version and is used to create and value
decision tree models. Additional advanced methodologies and analytics are also included:

e Decision Tree Models

e Monte Carlo risk simulation

e Sensitivity Analysis

e Scenario Analysis

e Bayesian (Joint and Posterior Probability Updating)
e Expected Value of Information

e MINIMAX

e MAXIMIN

e Risk Profiles
Books—analytical theory, application, and case studies are supported by 10 books.

Commented Cells—turn cell comments on or off and decide if you wish to show cell
comments on all input assumptions, output forecasts, and decision variables.

Detailed Example Models—24 example models in Risk Simulator and over 300 models in
Modeling Toolkit.

Detailed Reports—all analyses come with detailed reports.
Detailed User Manual—step-by-step user manual.

Flexible Licensing—certain functionalities can be turned on or off to allow you to
customize your risk analysis experience. For instance, if you are only interested in the
forecasting tools in Risk Simulator, you may be able to obtain a special license that activates
only the forecasting tools and leaves the other modules deactivated, thereby saving some
costs on the software.

Flexible Requirements—works in Window 7, Vista, and XP; integrates with Excel 2010,
2007, 2003; and works in MAC operating systems running virtual machines.

Fully customizable colors and charts—tilt, 3D, color, chart type, and much more!

Hands-on Exercises—detailed step-by-step guide to running Risk Simulator, including
guides on interpreting the results.
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12.

13.

14.

15.

16.

17.

18.

19.

20.

Multiple Cell Copy and Paste—allows assumptions, decision variables, and forecasts to be
copied and pasted.

Profiling—allows multiple profiles to be created in a single model (different scenarios of
simulation models can be created, duplicated, edited, and run in a single model).

Revised Icons in Excel 2007/2010—a completely reworked icon toolbar that is mote
intuitive and user friendly. There are four sets of icons that fit most screen resolutions
(1280 x 760 and above).

Right-Click Shottcuts—access all of Risk Simulatot's tools and menus using a mouse tight-
click.

ROV Software Integration—works well with other ROV software including Real Options
SLS, Modeling Toolkit, Basel Toolkit, ROV Compiler, ROV Extractor and Evaluator,
ROV Modeler, ROV Valuator, ROV Optimizer, ROV Dashboard, ESO Valuation
Toolkit, and others!

RS Functions in Excel—insert RS functions for setting assumptions and forecasts, and
right-click support in Excel.

Troubleshooter—allows you to re-enable the software, check for your system
requirements, obtain the Hardware 1D, and others.

Turbo Speed Analysis—runs forecasts and other analyses tools at blazingly fast speeds
(enhanced in version 5.2). The analyses and results remain the same but are now computed
very quickly; reports are generated very quickly as well.

Web Resources, Case Studies, and Videos—download free models, getting-started videos,
case studies, whitepapers, and other matetials from our website.

1.4.2 Simulation Module

21.

22.

23.

24.

25.
26.

27.

6 random number generators—ROV Advanced Subtractive Generator, Subtractive
Random Shuffle Generator, Long Period Shuffle Generator, Portable Random Shuffle
Generator, Quick IEEE Hex Generator, and Basic Minimal Portable Generator.

2 sampling methods—Monte Carlo and Latin Hypercube.

3 Correlation Copulas—applying Normal Copula, T Copula, and Quasi-Normal Copula
for correlated simulations.

42 probability distributions—arcsine, Bernoulli, beta, beta 3, beta 4, binomial, Cauchy, chi-
square, cosine, custom, discrete uniform, double log, Erlang, exponential, exponential 2, F
distribution, gamma, geometric, Gumbel max, Gumbel min, hypergeometric, Laplace,
logistic, lognormal (atithmetic) and lognormal (log), lognormal 3 (arithmetic) and
lognormal 3 (log), negative binomial, normal, parabolic, Pareto, Pascal, Pearson V, Pearson
VI, PERT, Poisson, power, power 3, Rayleigh, t and t2, triangular, uniform, Weibull,
Weibull 3.

Alternate Parameters—using percentiles as an alternate way of inputting parameters.

Custom Nonparametric Distribution—make your own distributions for running historical
simulations, and applying the Delphi method.

Distribution Truncation—enabling data boundaries.
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28.
29.
30.
31.

Excel Functions—set assumptions and forecasts using functions inside Excel
Multidimensional Simulation—simulation of uncertain input parameters.
Precision Control—determines if the number of simulation trials run is sufficient.

Super Speed Simulation—runs 100,000 trials in a few seconds.

1.4.3 Forecasting Module

32.
33.

34.

35.
36.
37.
38.

ARIMA—autoregressive integrated moving average models ARIMA (P,D,Q).

Auto ARIMA—runs the most common combinations of ARIMA to find the best-fitting
model.

Auto Econometrics—runs thousands of model combinations and permutations to obtain
the best-fitting model for existing data (linear, nonlinear, interacting, lag, leads, rate,
difference).

Basic Economettics—econometric and linear/nonlinear and interacting regression models.
Combinatorial Fuzzy Logic Forecasts—time-series forecast methods
Cubic Spline—nonlinear interpolation and extrapolation.

GARCH—volatility =~ projections  using  generalized  autoregressive  conditional
heteroskedasticity models: GARCH, GARCH-M, TGARCH, TGARCH-M, EGARCH,
EGARCH-T, GJR-GARCH, and GJR-TGARCH.

39. J-Curve—exponential ] curves.

40. Limited Dependent Variables—I ogit, Probit, and Tobit.

41. Markov Chains—two competing elements over time and market share predictions.

42. Multiple Regression—regular linear and nonlinear regression, with stepwise methodologies
(forward, backward, correlation, forward-backward).

43. Neural Network Forecasts—linear, nonlinear logistic, hyperbolic tangent, and cosine

44. Nonlinear Extrapolation—nonlinear time-seties forecasting.

45. S Curve—logistic S curves.

46. Time-Seties Analysis—8 time-seties decomposition models for predicting levels, trends,
and seasonalities.

47. Trendlines—forecasting and fitting using linear, nonlinear polynomial, power, logarithmic,
exponential, and moving averages with goodness of fit.

1.4.4 Optimization Module

48. Linear Optimization—multiphasic optimization and general linear optimization.

49. Nonlinear Optimization—detailed results including Hessian matrices, LaGrange functions,
and more.

50. Static Optimization—quick runs for continuous, integers, and binary optimizations.
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51
52.
53.

54.
55.

56.

57.

58.

Dynamic Optimization—simulation with optimization.
Stochastic Optimization—quadratic, tangential, central, forward, and convergence criteria.

Efficient Frontier—combinations of stochastic and dynamic optimizations on multivariate
efficient frontiers.

Genetic Algorithms—used for a variety of optimization problems.

Multiphasic Optimization—testing for local versus global optimum allowing better control
over how the optimization is run, and increases the accuracy and dependency of the results.

Percentiles and Conditional Means—additional statistics for stochastic optimization,
including percentiles as well as conditional means, which are critical in computing
conditional value at risk measures.

Search Algorithm—simple, fast, and efficient search algorithms for basic single decision
variable and goal seek applications.

Super Speed Simulation in Dynamic and Stochastic Optimization—runs simulation at
super speed while integrated with optimization.

1.4.5 Analytical Tools Module

59.
60.
61.
62.
63.

64.

65.
60.
67.

68.
69.

70.

71.
72.

Check Model—tests for the most common mistakes in your model.

Correlation Editor—allows large correlation matrices to be directly entered and edited.
Create Report—automates report generation of assumptions and forecasts in a model.
Create Statistics Report—generates comparative report of all forecast statistics.

Data Diagnostics—runs tests on heteroskedasticity, micronumerosity, —outliers,
nonlinearity, autocorrelation, normality, sphericity, nonstationarity, multicollinearity, and
correlations.

Data Extraction and Export—extracts data to Excel or flat text files and Risk Sim files,
runs statistical reports and forecast result reports.

Data Open and Import—retrieves previous simulation run results.
Deseasonalization and Detrending—deseasonalizes and detrends your data.

Distributional Analysis—computes exact PDF, CDF, and ICDF of all 42 distributions and
generates probability tables.

Distributional Designer—allows you to create custom distributions.

Distributional Fitting (Multiple)— runs multiple variables simultaneously, accounts for
correlations and correlation significance.

Distributional Fitting (Single)—Kolmogorov-Smirnov and chi-square tests on continuous
distributions, complete with reports and distributional assumptions.

Hypothesis Testing—tests if two forecasts are statistically similar or different.

Nonparametric Bootstrap—simulation of the statistics to obtain the precision and accuracy
of the results.
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73. Ovetlay Charts—fully customizable ovetlay charts of assumptions and forecasts together
(CDF, PDF, 2D/3D chatt types).

74. Principal Component Analysis—tests the best predictor variables and ways to reduce the
data array.

75. Scenario Analysis—hundreds and thousands of static two-dimensional scenatios.

76. Seasonality Test—tests for various seasonality lags.

77. Segmentation Clustering—groups data into statistical clusters for segmenting your data.
78. Sensitivity Analysis—dynamic sensitivity (simultaneous analysis).

79. Structural Break Test—tests if your time-seties data has statistical structural breaks.

80. Tornado Analysis—static perturbation of sensitivities, spider and tornado analysis, and
scenatio tables.

1.4.6 Statistics and BizStats Module

81. Percentile Distributional Fitting—using percentiles and optimization to find the best-fitting
distribution.
82. Probability Distributions’ Charts and Tables—tun 45 probability distributions, their four

moments, CDF, ICDF, PDF, charts, and overlay multiple distributional charts, and
generate probability distribution tables.

83. Statistical Analysis—descriptive statistics, distributional fitting, histograms, charts, nonlinear
extrapolation, normality test, stochastic parameters estimation, time-series forecasting,
trendline projections, etc.

84. ROV BIZSTATS—over 130 business statistics and analytical models:

Absolute Values, ANOVA: Randomized Blocks Multiple Treatments, ANOVA: Single Factor
Multiple Treatments, ANOVA: Two Way Analysis, ARIMA, Auto ARIMA, Autocorrelation
and Partial Autocorrelation, Autoeconometrics (Detailed), Autoeconomettics (Quick), Average,
Combinatorial Fuzzy Logic Forecasting, Control Chart: C, Control Chart: NP, Control Chart:
P, Control Chatt: R, Control Chart: U, Control Chart: X, Control Chart: XMR, Correlation,
Correlation (Linear, Nonlinear), Count, Covariance, Cubic Spline, Custom Econometric
Model, Data Descriptive Statistics, Deseasonalize, Difference, Distributional Fitting,
Exponential ] Curve, GARCH, Heteroskedasticity, Lag, Lead, Limited Dependent Variables
(Logit), Limited Dependent Variables (Probit), Limited Dependent Variables (Tobit), Linear
Interpolation, Linear Regression, LN, Log, Logistic S Curve, Markov Chain, Max, Median, Min,
Mode, Neural Network, Nonlinear Regression, Nonparametric: Chi-Square Goodness of Fit,
Nonparametric: Chi-Square Independence, Nonparametric: Chi-Square Population Variance,
Nonparametric: Friedman’s Test, Nonparametric: Kruskal-Wallis Test, Nonparametric:
Lilliefors Test, Nonparametric: Runs Test, Nonparametric: Wilcoxon Signed-Rank (One Var),
Nonparametric: Wilcoxon Signed-Rank (Two Var), Parametric: One Variable (T) Mean,
Parametric: One Variable (Z) Mean, Parametric: One Variable (Z) Proportion, Parametric: Two
Variable (F) Variances, Parametric: Two Variable (T) Dependent Means, Parametric: Two
Variable (T) Independent Equal Variance, Parametric: Two Variable (T) Independent Unequal
Variance, Parametric: Two Variable (Z) Independent Means, Parametric: Two Variable (Z)
Independent Proportions, Power, Principal Component Analysis, Rank Ascending, Rank
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Descending, Relative LN Returns, Relative Returns, Seasonality, Segmentation Clustering,
Semi-Standard Deviation (Lower), Semi-Standard Deviation (Upper), Standard 2D Area,
Standard 2D Bar, Standard 2D Line, Standard 2D Point, Standard 2D Scatter, Standard 3D
Area, Standard 3D Bar, Standard 3D Line, Standard 3D Point, Standard 3D Scatter, Standard
Deviation (Population), Standard Deviation (Sample), Stepwise Regression (Backward),
Stepwise Regression (Correlation), Stepwise Regression (Forward), Stepwise Regression
(Forward-Backward), Stochastic Processes (Exponential Brownian Motion), Stochastic
Processes (Geometric Brownian Motion), Stochastic Processes (Jump Diffusion), Stochastic
Processes (Mean Reversion with Jump Diffusion), Stochastic Processes (Mean Reversion),
Structural Break, Sum, Time-Series Analysis (Auto), Time-Seties Analysis (Double Exponential
Smoothing), Time-Series Analysis (Double Moving Average), Time-Series Analysis (Holt-
Winter’s Additive), Time-Series Analysis (Holt-Winter’s Multiplicative), Time-Series Analysis
(Seasonal Additive), Time-Series Analysis (Seasonal Multiplicative), Time-Series Analysis (Single
Exponential Smoothing), Time-Series Analysis (Single Moving Average), Trend Line
(Difference Detrended), Trend Line (Exponential Detrended), Trend Line (Exponential),
Trend Line (Linear Detrended), Trend Line (Linear), Trend Line (Logarithmic Detrended),
Trend Line (Logarithmic), Trend Line (Moving Average Detrended), Trend Line (Moving
Average), Trend Line (Polynomial Detrended), Trend Line (Polynomial), Trend Line (Power
Detrended), Trend Line (Power), Trend Line (Rate Detrended), Trend Line (Static Mean
Detrended), Trend Line (Static Median Detrended), Vatiance (Population), Variance (Sample),
Volatlity: EGARCH, Volatlity: EGARCH-T, Voladlity: GARCH, Volatility: GARCH-M,
Volatllity: GJR GARCH, Volatillity: GJR TGARCH, Volatility: Log Returns Approach,
Volatility: TGARCH, Volatility: TGARCH-M, Yield Curve (Bliss), and Yield Cutve (Nelson-
Siegel).
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2. MopenupoBaHue no
meToay MonHre-Kapno

onte Carlo risk simulation, named for the famous gambling capital of Monaco, is a
very potent methodology. For the practitioner, simulation opens the door for

solving difficult and complex but practical problems with great ease. Monte Catlo
creates artificial futures by generating thousands and even millions of sample paths of outcomes
and looks at their prevalent characteristics. For analysts in a company, taking graduate-level
advanced math courses is just not logical or practical. A brilliant analyst would use all available
tools at his or her disposal to obtain the same answer the easiest and most practical way
possible. And in all cases, when modeled correctly, Monte Catlo simulation provides similar
answers to the more mathematically elegant methods. So, what is Monte Carlo simulation and
how does it work?

2.1 Uro rakoe Monre-Kapao?

Monte Catlo simulation in its simplest form is a random number generator that is useful for
forecasting, estimation, and risk analysis. A simulation calculates numerous scenarios of a model
by repeatedly picking values from a user-predefined probability distribution for the uncertain
variables and using those values for the model. As all those scenarios produce associated results
in a model, each scenario can have a forecast. Forecasts are events (usually with formulas or
functions) that you define as important outputs of the model. These usually are events such as
totals, net profit, or gross expenses.

Simplistically, think of the Monte Carlo simulation approach as repeatedly picking golf balls out
of a large basket with replacement. The size and shape of the basket depend on the
distributional input assumption (e.g., a normal distribution with a mean of 100 and a standard
deviation of 10, versus a uniform distribution or a triangular distribution) where some baskets
are deeper or more symmetrical than others, allowing certain balls to be pulled out more
frequently than others. The number of balls pulled repeatedly depends on the number of trials
simulated. For a large model with multiple related assumptions, imagine a very large basket
wherein many smaller baskets reside. Each small basket has its own set of golf balls that are
bouncing around. Sometimes these small baskets are linked with each other (if there is a
correlation between the variables) and the golf balls are bouncing in tandem, while other times
the balls are bouncing independently of one another. The balls that are picked each time from
these interactions within the model (the large central basket) are tabulated and recorded,
providing a forecast output result of the simulation.
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2.2 Ilpucrymras k pabore c Risk Simulator

2.2.1 A High-Level Overview of the Software

The Risk Simulator software has several different applications including Monte Catlo
simulation, forecasting, optimization, and risk analytics.

The Simulation Module allows you to run simulations in your existing Excel-based
models, generate and extract simulation forecasts (distributions of results), perform
distributional fitting (automatically finding the best-fitting statistical distribution),
compute cotrelations (maintain relationships among simulated random variables),
identify sensitivities (creating tornado and sensitivity charts), test statistical hypotheses
(finding statistical differences between pairs of forecasts), run bootstrap simulation
(testing the robustness of result statistics), and run custom and nonparametric
simulations (simulations using historical data without specifying any distributions or
their parameters for forecasting without data or applying expert opinion forecasts).

The Forecasting Module can be used to generate automatic time-seties forecasts (with
and without seasonality and trend), multivariate regressions (modeling relationships
among variables), nonlinear extrapolations (curve fitting), stochastic processes
(random walks, mean-reversions, jump-diffusion, and mixed processes), Box-Jenkins
ARIMA  (econometric forecasts), Auto ARIMA, basic econometrics and auto
econometrics (modeling relationships and generating forecasts), exponential | curves,
logistic S curves, GARCH models and their multiple variations (modeling and
forecasting volatility), maximum likelihood models for limited dependent vatiables
(logit, tobit, and probit models), Markov chains, trendlines, spline curves, and others.

The Optimization Module is used for optimizing multiple decision variables subject to
constraints to maximize or minimize an objective, and can be run either as a static
optimization, dynamic, and stochastic optimization under uncertainty together with
Monte Carlo simulation, or as a stochastic optimization with super speed simulations.
The software can handle linear and nonlinear optimizations with binaty, integer, and
continuous variables, as well as generate Markowitz efficient frontiers.

The Analytical Tools Module allows you to run segmentation clustering, hypothesis
testing, statistical tests of raw data, data diagnostics of technical forecasting
assumptions (e.g., heteroskedasticity, multicollinearity, and the like), sensitivity and
scenatio analyses, ovetlay chart analysis, spider charts, tornado charts, and many other
powerful tools.

ROV BizStats (over 130 business statistics and analytical models).

ROV Decision Tree (decision tree models, Monte Carlo tisk simulation on decision
trees, sensitivity analysis, scenario analysis, Bayesian joint and posterior probability
updating, expected value of information, MINIMAX, MAXIMIN, risk profiles).

The Real Options Super Lattice Solver is a software that complements Risk Simulator,
used for solving simple to complex real options problems.

The following sections walk you through the basics of the Simulation Module in Risk
Simulator, while future chapters provide more details about the applications of other modules.
To follow along, make sure you have Risk Simulator installed on your computer to proceed.

12|Page



Starting a New
Simulation Profile

RISK SIMULATOR

In fact, it is highly recommended that you first watch the getting started videos on the web
(www.tealoptionsvaluation.com/tisksimulator.html) or attempt the step-by-step exetcises at the
end of this chapter before coming back and reviewing the text in this chapter. This approach is
recommended because the videos will get you started immediately, as will the exercises, whereas
the text in this chapter focuses more on the theory and detailed explanations of the properties
of simulation.

2.2.2 Running a Monte Carlo Simulation

Typically, to run a simulation in your existing Excel model, the following steps have to
be performed:

1. Start a new simulation profile or open an existing profile.
Define input assumptions in the relevant cells.
Define output forecasts in the relevant cells.

Run simulation.

SAREE R

Interpret the results.

If desired, and for practice, open the example file called Basic Simulation Model and follow
along with the examples below on creating a simulation. The example file can be found either
on the start menu at Szart | Real Options 1V aluation | Risk Simmlator | Exanmples or accessed
directly through Risk Simmlator | Exanple Models.

To start a new simulation, you will first need to create a simulation profile. A simulation profile
contains a complete set of instructions on how you would like to run a simulation. That is, all
the assumptions, forecasts, run preferences, and so forth. Having profiles facilitates creating
multiple scenarios of simulations. That is, using the same exact model, several profiles can be
created, each with its own specific simulation properties and requirements. The same person
can create different test scenarios using different distributional assumptions and inputs or
multiple persons can test their own assumptions and inputs on the same model.

e  Start Excel and create a new model or open an existing one (you can use the Basic
Simulation Model example to follow along).

o Click on Risk Simulator | New Sinmlation Profile.

e Specify a title for your simulation as well as all other pertinent information (Figure 2.1).
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Figure 2.1 — New Simulation Profile

e Title: Specifying a simulation title allows you to create multiple simulation profiles in a
single Excel model. Thus you can now save different simulation scenario profiles
within the same model without having to delete existing assumptions and changing
them each time a new simulation scenario is required. You can always change the
profile’s name later (Risk Sinulator | Edit Profile).

e Number of trials: This is where the number of simulation trials required is entered.
That is, running 1,000 trials means that 1,000 different iterations of outcomes based on
the input assumptions will be generated. You can change this number as desired, but
the input has to be positive integers. The default number of runs is 1,000 trials. You
can use precision and error control later in this chapter to automatically help determine
how many simulation trials to run (see the section on precision and error control for

details).

e Pause simulation on error: If checked, the simulation stops every time an error is
encountered in the Excel model. That is, if your model encounters a computation
error (e.g., some input values generated in a simulation trial may yield a divide by zero
error in one of your spreadsheet cells), the simulation stops. This function is important
to help audit your model to make sure there are no computational errors in your Excel
model. However, if you are sure the model works, then there is no need for this
preference to be checked.

e Turn on correlations: If checked, correlations between paired input assumptions will
be computed. Otherwise, cotrelations will all be set to zero, and a simulation is run
assuming no cross-correlations between input assumptions. As an example, applying
correlations will yield more accurate results if, indeed, correlations exist, and will tend
to yield a lower forecast confidence if negative correlations exist. After turning on
correlations here, you can later set the relevant correlation coefficients on each
assumption generated (see the section on correlations for more details).

e Specify random number sequence: Simulation by definition will yield slightly
different results every time a simulation is run. This characteristic is by virtue of the
random number generation routine in Monte Catlo simulation and is a theoretical fact
in all random number generators. However, when making presentations, sometimes
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you may require the same results (especially when the report being presented shows
one set of results and during a live presentation you would like to show the same
results being generated, or when you are sharing models with others and would like
the same results to be obtained every time), so you would then check this preference
and enter in an initial seed number. The seed number can be any positive integer.
Using the same initial seed value, the same number of trials, and the same input
assumptions, the simulation will always yield the same sequence of random numbers,
guaranteeing the same final set of results.

Note that once a new simulation profile has been created, you can come back later and modify
these selections. To do so, make sure that the current active profile is the profile you wish to
modify, otherwise, click on Risk Simmnlator | Change Simmlation Profile, select the profile you wish
to change and click OK (Figure 2.2 shows an example where there are multiple profiles and
how to activate a selected profile). Then, click on Risé Simulator | Edit Sinmlation Profile and
make the required changes. You can also duplicate or rename an existing profile. When creating
multiple profiles in the same Excel model, make sure to provide each profile a unique name so
you can tell them apart later on. Also, these profiles are stored inside hidden sectors of the
Excel *xls file and you do not have to save any additional files. The profiles and their contents
(assumptions, forecasts, etc.) are automatically saved when you save the Excel file. Finally, the
last profile that is active when you exit and save the Excel file will be the one that is opened the
next time the Excel file is accessed.

-
[FF] Wsmenenme axrvsHoi camynsLpmm E@lﬂ

Hazeanue cumynawam | Pafiouan kHWra | [ata cozgaHua | [ata nocnegHero cox... |
20111024 | NA |
Hoean cumynaumwa 2 Book: 1 2011-10-24 MAA
Hoear cumynaumA 3 Book: 1 2011-10-24 MAA

MNpocMoTp NpotUnel CUMYNALMK BO BCEX paBouled KHMREK

[ ¥ oanuTE ] [CnsnaTh Knnum] [ Ok J [ Otmena

Figure 2.2 — Change Active Simulation

The next step is to set input assumptions in your model. Note that assumptions can only be
assigned to cells without any equations ot functions—typed-in numerical values that are inputs
in a model—whereas output forecasts can only be assigned to cells with equations and
functions—outputs of a model. Recall that assumptions and forecasts cannot be set unless a
simulation profile already exists. Do the following to set new input assumptions in your model:

e Make sure a Simulation Profile exists; open an existing profile or start a new profile
(Risk Simulator | New Simmulation Profile).
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e Select the cell you wish to set an assumption on (e.g., cell G§ in the Basic Simulation
Model example).

o Click on Risk Simmlator | Set Input Assumption or click on the set input assumption icon
in the Risk Simulator icon toolbar.

o Select the relevant distribution you want, enter fhe relevant distribution parameters (e.g., Triangular
distribution with 1, 2, 2.5 as the minimum, most likely, and maximum values), and hit
OK to insett the input assumption into your model (Figure 2.3).
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Figure 2.3 — Setting an Input Assumption

Note that you can also set assumptions by selecting the cell you wish to set the assumption on
and using the mouse right-click, access the shortcut Risk Simulator menu to set an input
assumption. In addition, for expert users, you can set input assumptions using the Risk
Simulator RS Functions: select the cell of choice, click on Excel’s Insert, Function, select the All
Category, and scroll down to the RS functions list (we do not recommend using RS functions
unless you are an expert uset). For the examples going forward, we suggest following the basic
instructions in accessing menus and icons.

As shown in Figure 2.4, there are several key areas in the Assumption Properties worthy of
mention.

e Assumption Name: This is an optional area to allow you to enter in unique names
for the assumptions to help track what each of the assumptions represents. Good
modeling practice is to use short but precise assumption names.

e Distribution Gallery: This area to the left shows all of the different distributions
available in the software. To change the views, right-click anywhere in the gallery and
select large icons, small icons, or list. There are over two dozen distributions available.
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e Input Parameters: Depending on the distribution selected, the required relevant
parameters are shown. You may either enter the parameters directly or link them to
specific cells in your worksheet. Hard coding or typing the parameters is useful when
the assumption parameters are assumed not to change. Linking to worksheet cells is
useful when the input parameters need to be visible or are allowed to be changed (click
on the link icon to link an input parameter to a worksheet cell).

¢ Enable Data Boundary: These are typically not used by the average analyst but exist
for truncating the distributional assumptions. For instance, if a normal distribution is
selected, the theoretical boundaries are between negative infinity and positive infinity.
However, in practice, the simulated variable exists only within some smaller range, and
this range can then be entered to truncate the distribution appropriately.

e Correlations: Pairwise correlations can be assigned to input assumptions here. If
correlations are required, remember to check the Turn on Correlations preference by
clicking on Risk Simmlator |f:zﬁf Simmnlation Profile. See the discussion on correlations
later in this chapter for more details about assigning correlations and the effects
correlations will have on a model. Notice that you can either truncate a distribution or
correlate it to another assumption, but not both.

e  Short Descriptions: These exist for each of the distributions in the gallery. The short
descriptions explain when a certain distribution is used as well as the input parameter
requirements. See the section in Understanding Probability Distributions for Monte
Catlo Simulation for details on each distribution type available in the software.

e Regular Input and Percentile Input: This option allows the user to perform a quick
due diligence test of the input assumption. For instance, if setting a normal distribution
with some mean and standard deviation inputs, you can click on the percentile input to
see what the corresponding 10th and 90th percentiles are.

¢ Enable Dynamic Simulation: This option is unchecked by default, but if you wish
to run a multidimensional simulation (ie., if you link the input parameters of the
assumption to another cell that is itself an assumption, you are simulating the inputs,
or simulating the simulation), then remember to check this option. Dynamic
simulation will not work unless the inputs are linked to other changing input
assumptions.

Note: If you are following along with the example, continue by setting another assumption on
cell G9. This time use the Uniform distribution with a minimum value of 0.9 and a maximum
value of 1.1. Then, proceed to defining the output forecasts in the next step.
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Figure 2.4 — Assumption Properties

The next step is to define output forecasts in the model. Forecasts can only be defined on
output cells with equations or functions. The following describes the set forecast process:

Select the cell you wish to set a forecast (e.g., cell G70 in the Basic Simulation Model
example).

Click on Risk Sinunlator | Set Output Forecast or click on the set output forecast icon on
the Risk Simulator icon toolbar (Figure 1.3).

Enter the relevant information and click OK.

Note that you can also set output forecasts by selecting the cell you wish to set the forecast on
and using the mouse right-click, access the shortcut Risk Simulator menu to set an output
forecast. Figure 2.5 illustrates the set forecast properties.

Forecast Name: Specify the name of the forecast cell. This is important because
when you have a large model with multiple forecast cells, naming the forecast cells
individually allows you to access the right results quickly. Do not underestimate the
importance of this simple step. Good modeling practice is to use short but precise
forecast names.

Forecast Precision: Instead of relying on a guesstimate of how many trials to run in
your simulation, you can set up precision and error controls. When an error-precision
combination has been achieved in the simulation, the simulation will pause and inform
you of the precision achieved, making the required number of simulation trials an
automated process rather than a guessing game. Review the section on error and
precision control later in this chapter for more specific details.

Show Forecast Window: Allows the user to show or not show a particular forecast
window. The default is to always show a forecast chart.
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Figure 2.5 — Set Output Forecast

If everything looks right, simply click on Risé Sizulator | Run Simmlation or click on the Run icon
on the Risk Simulator toolbar and the simulation will proceed. You may also reset a simulation
after it has run to rerun it (Risk Simulator | Reset Simmulation or the reset simulation icon on the
toolbar) or to pause it during a run. Also, the step function (Risk Sizulator | Step Sinmmlation or
the step simmlation icon on the toolbar) allows you to simulate a single trial, one at a time, useful
for educating others on simulation (i.e., you can show that at each trial, all the values in the
assumption cells are being replaced and the entire model is recalculated each time). You can
also access the run simulation menu by right-clicking anywhere in the model and selecting Run
Simulation.

Risk Simulator also allows you to run the simulation at extremely fast speed, called Super Speed.
To do this, click on Risk Sinmlator | Run Super Speed Simmlation or use the run super speed icon.
Notice how much faster the super speed simulation runs. In fact, for practice, Reser Simmulation
and then Edit Simmlation Profile and change the Number of Trials to 100,000, and Run Super
Speed. It should only take a few seconds to run. However, please be aware that super speed
simulation will not run if the model has errors, VBA (visual basic for applications), or links to
external data sources or applications. In such situations, you will be notified and the regular
speed simulation will be run instead. Regular speed simulations are always able to run even with
errors, VBA, or external links.

The final step in Monte Catlo simulation is to interpret the resulting forecast charts. Figures 2.6
through 2.13 show the forecast chart and the corresponding statistics generated after running
the simulation. Typically, the following elements are important in interpreting the results of a
simulation:

e Forecast Chart: The forecast chart shown in Figure 2.6 is a probability histogram that
shows the frequency counts of values occurring in the total number of trials simulated.
The vertical bars show the frequency of a particular x value occurring out of the total
number of trials, while the cumulative frequency (smooth line) shows the total
probabilities of all values at and below x occurring in the forecast.
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e Forecast Statistics: The forecast statistics shown in Figure 2.7 summarize the
distribution of the forecast values in terms of the four moments of a distribution. See
the Understanding the Forecast Statistics section later in this chapter for more details
on what some of these statistics mean. You can rotate between the histogram and
statistics tabs by depressing the space bar.
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Figure 2.6 — Forecast Chart
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Figure 2.7 — Forecast Statistics

e Preferences: The preferences tab in the forecast chart (Figure 2.8A) allows you to
change the look and feel of the charts. For instance, if .Akvays On Top is selected, the
forecast charts will always be visible regardless of what other software are running on
your computer. Histogran Resolution allows you to change the number of bins of the
histogram, anywhere from 5 bins to 100 bins. Also, the Daza Update teature allows you
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to control how fast the simulation runs versus how often the forecast chart is updated.
For example, viewing the forecast chart updated at almost every trial will slow down
the simulation as more memory is being allocated to updating the chart versus running
the simulation. This is merely a user preference and in no way changes the results of
the simulation, just the speed of completing the simulation. To further increase the
speed of the simulation, you can minimize Excel while the simulation is running,
thereby reducing the memory required to visibly update the Excel spreadsheet and
freeing up the memory to run the simulation. The Clear A/l and Mininize A/l controls
all the open forecast charts.

e Options: As shown in Figure 2.8B, this forecast chart feature allows you to show all
the forecast data or to filter in/out values that fall within either some specified interval
or some standard deviation you choose. Also, the precision level can be set here for
this specific forecast to show the error levels in the statistics view. See the section on
error and precision control later in this chapter for more details. Show the following
statistic on histogram is a user preference for whether the mean, median, first quartile,
and fourth quartile lines (25th and 75th percentiles) should be displayed on the
forecast chart.

e Controls: As shown in Figure 2.8C, this tab has all the functionalities in allowing you
to change the type, color, size, zoom, tilt, 3D, and other things in the forecast chart, as
well as to generate ovetlay charts (PDF, CDF) and run distributional fitting on your
forecast data (see the Data Fitting sections for more details on this methodology).

¢  Global View versus Normal View: Figures 2.8A to 2.8C show the forecast chart’s
Normal View where the forecast chart user interface is divided into tabs, making it
small and compact. In contrast, Figure 2.9 shows the Global View where all elements
are located in a single interface. The results are identical in both views and selecting
which view is a matter of personal preference. You can switch between these two
views by clicking on the link, located at the top right corner, called Global /e and
Local View.
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Figure 2.8A — Forecast Chart Preferences
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Figure 2.8B — Forecast Chart Options
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Figure 2.9 — Forecast Chart Global View

In forecast chatts, you can determine the probability of occutrence called confidence intervals.
That is, given two values, what are the chances that the outcome will fall between these two
values? Figure 2.10 illustrates that there is a 90% probability that the final outcome (in this case,
the level of income) will be between $0.2653 and $1.3230. The two-tailed confidence interval
can be obtained by first selecting Two-1ui/ as the type, entering the desired certainty value (e.g.,
90) and hitting 1°4B on the keyboard. The two computed values corresponding to the certainty
value will then be displayed. In this example, there is a 5% probability that income will be below
$0.2653 and another 5% probability that income will be above $1.3230. That is, the two-tailed
confidence interval is a symmetrical interval centered on the median, or 50th percentile, value.
Thus, both tails will have the same probability.

Alternatively, a one-tail probability can be computed. Figure 2.11 shows a left-tail selection at
95% confidence (i.c., choose Lef-Tail < as the type, enter 95 as the certainty level, and hit T-1B
on the keyboard). This means that there is a 95% probability that the income will be below
$1.3230 or a 5% probability that income will be above $1.3230, corresponding perfectly with
the results seen in Figure 2.10.
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Figure 2.10 — Forecast Chart Two-Tail Confidence Interval
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Figure 2.11 — Forecast Chart One-Tail Confidence Interval

In addition to evaluating what the confidence interval is (i.e., given a probability level and
finding the relevant income values), you can determine the probability of a given income value.
For instance, what is the probability that income will be less than or equal to $1? To obtain the
answer, select the [ ¢f-Tai/ = probability type, enter 7 into the value input box, and hit TAB.
The corresponding certainty will then be computed (in this case, as shown in Figure 2.12, there

is a 67.70% probability income will be at or below $1).
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For the sake of completeness, you can select the Righr-1Tai/ > probability type, and enter the
value 7 in the value input box, and hit TAB. The resulting probability indicates the right-tail
probability past the value 1, that is, the probability of income exceeding $1 (in this case, as
shown in Figure 2.13, we see that there is a 32.30% probability of income exceeding $1). The
sum of 67.70% and 32.30% is, of course, 100%, the total probability under the curve.
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Figure 2.12 — Forecast Chart Probability Evaluation
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Figure 2.13 — Forecast Chart Probability Evaluation
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e  The forecast window is resizable by clicking on and dragging the bottom right corner
of the forecast window.

e Itis also advisable that the current simulation be reset (Risk Simulator | Reset Simmlation)
before rerunning a simulation.

e  Remember that you will need to hit TAB on the keyboard to update the chart and
results when you type in the certainty values or right- and left-tail values.

¢  You can also hit the spacebar on the keyboard repeatedly to cycle among the
histogram to statistics, preferences, options, and control tabs.

e In addition, if you click on Risk Simulator | Options you can access several different
options for Risk Simulator, including allowing Risk Simulator to start each time Excel
starts or to only start when you want it to (by going to Start | Programs | Real Options
Valuation | Risk Sinmlator | Risk Sinmlator), changing the cell colots of assumptions and
forecasts, and turning cell comments on and off (cell comments will allow you to see
which cells are input assumptions and which are output forecasts as well as their
respective input parameters and names). Do spend some time playing around with the
forecast chart outputs and various bells and whistles, especially the Controls tab.

2.3 Koppessarpmm nKoarpoas rogHocTH

2.3.1 The Basics of Correlations

The correlation coefficient is a measure of the strength and direction of the relationship
between two vatiables, and it can take on any value between —1.0 and +1.0. That is, the
correlation coefficient can be decomposed into its sign (positive or negative relationship
between two variables) and the magnitude or strength of the relationship (the higher the
absolute value of the correlation coefficient, the stronger the relationship).

The correlation coefficient can be computed in several ways. The first approach is to manually
compute the correlation, r, of two variables, x and y, using:

A, = aniYi_ZXiZyi
LK (xS - (E )

The second approach is to use Excel’s CORREL function. For instance, if the 10 data points
for x and y are listed in cells A1:B10, then the Excel function to use is CORREL (A1:A10,
B1:B10).

The third approach is to run Risk Simulator’s Multi-Fit Tool, and the resulting correlation
matrix will be computed and displayed.

It is important to note that correlation does not imply causation. Two completely unrelated
random variables might display some correlation but this does not imply any causation between
the two (e.g., sunspot activity and events in the stock market are correlated but there is no
causation between the two).

There are two general types of correlations: parametric and nonparametric correlations.
Pearson’s correlation coefficient is the most common correlation measure and is usually
referred to simply as the correlation coefficient. However, Pearson’s correlation is a parametric
measure, which means that it requires both correlated vatiables to have an undetlying normal
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distribution and that the relationship between the variables is linear. When these conditions are
violated, which is often the case in Monte Catlo simulation, the nonparametric counterparts
become more important. Spearman’s rank correlation and Kendall's tau are the two
alternatives. The Spearman correlation is most commonly used and is most appropriate when
applied in the context of Monte Carlo simulation—there is no dependence on normal
distributions or linearity, meaning that correlations between different variables with different
distribution can be applied. To compute the Spearman correlation, first rank all the x and y
variable values and then apply the Pearson’s cortrelation computation.

In the case of Risk Simulator, the correlation used is the more robust nonparametric
Spearman’s rank correlation. However, to simplify the simulation process, and to be consistent
with Excel’s correlation function, the correlation inputs required are the Pearson’s correlation
coefficient. Risk Simulator will then apply its own algorithms to convert them into Spearman’s
rank correlation, thereby simplifying the process. However, to simplify the user interface, we
allow users to enter the more common Pearson’s product-moment correlation (e.g., computed
using Excel’s CORREL function), while in the mathematical codes, we convert these simple
correlations into Spearman’s rank-based correlations for distributional simulations.

2.3.2 Applying Correlations in Risk Simulator
Correlations can be applied in Risk Simulator in several ways:

e When defining assumptions (Risk Swmulator |Sel Input Assumption), simply enter the
correlations into the correlation matrix grid in the Distribution Gallery.

e With existing data, run the Multi-Fit tool (Risk Sinzulator | Tools | Distributional Fitting
| Multiple V ariables) to perform distributional fitting and to obtain the correlation
matrix between pairwise variables. If a simulation profile exists, the assumptions fitted
will automatically contain the relevant correlation values.

e  With existing assumptions, you can click on Risk Sinzulator | Tools | Edit Correlations to
enter the pairwise correlations of all the assumptions directly in one user interface.

Note that the correlation matrix must be positive definite. That is, the correlation must be
mathematically valid. For instance, suppose you are trying to correlate three variables: grades of
graduate students in a particular year, the number of beers they consume a week, and the
number of hours they study a week. One would assume that the following correlation
relationships exist:

Grades and Beer: — The more they drink, the lower the grades (no-show on exams)
Grades and Study: + The more they study, the higher the grades
Beer and Study:  — The more they drink, the less they study (drunk and partying)

However, if you input a negative correlation between Grades and Study, and assuming that the
correlation coefficients have high magnitudes, the correlation matrix will be nonpositive
definite. It would defy logic, correlation requirements, and matrix mathematics. However,
smaller coefficients can sometimes still work even with the bad logic. When a nonpositive or
bad correlation matrix is entered, Risk Simulator will automatically inform you, and offers to
adjust these correlations to something that is semipositive definite while still maintaining the
overall structure of the correlation relationship (the same signs as well as the same relative
strengths).
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2.3.3 The Effects of Correlations in Monte Carlo Simulation

Although the computations required to correlate variables in a simulation are complex, the
resulting effects are fairly clear. Figure 2.14 shows a simple correlation model (Correlation
Effects Model in the example folder). The calculation for revenue is simply price multiplied by
quantity. The same model is replicated for no correlations, positive correlation (+0.8), and
negative correlation (—0.8) between price and quantity.

Correlation Model

Without Fositive Megative

Correlation  Correlation  Correlation
Frice $2.00 $2.00 $2.00
Quantity 1.00 1.00 1.00
Revenue $2.00 $2.00 $2.00

Figure 2.14 — Simple Correlation Model

The resulting statistics are shown in Figure 2.15. Notice that the standard deviation of the
model without correlations is 0.1450, compared to 0.1886 for the positive correlation and
0.0717 for the negative correlation. That is, for simple models, negative correlations tend to
reduce the average spread of the distribution and create a tight and more concentrated forecast
distribution as compared to positive correlations with larger average spreads. However, the
mean remains relatively stable. This implies that correlations do little to change the expected
value of projects but can reduce or increase a project’s risk.
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Figure 2.15 — Correlation Results

28| Page




RISK SIMULATOR

Figure 2.16 illustrates the results after running a simulation, extracting the raw data of the
assumptions and computing the correlations between the variables. The figure shows that the
input assumptions are recovered in the simulation. That is, you enter +0.8 and —0.8 correlations
and the resulting simulated values have the same correlations.

3Mo U3eTeUeHHBIE U3 CUMYNALUU HeoBpaBiomaHHele 3HaueHUA. JameM OHU GOOMHOGAMGA, Ymobkl MpOSepUMs, YUMo Koppenauul,

xomopeie bbinu eeedersl 8 GoMyLUEHUR, ABNAMMGA Ha caMom dene ModenupyeMsiMu koppenauuamu. Koageguuyuesm koppensyuu Mupcoxa

AenAemcA nurelrod napamempuyeckod koppenayued, & pesynsmamsl ceudemenscmeyrom, yme esedentsie koppensuuu (+0,80 u -0,80)

Ha camoM defe ABNAHMCH KODPENALUAMU Mexdy nepemertsimu. CM. Bonee nodpobHeie ceederus e pabome [Axonamana Myva "Modenuposarue puckoe” (Wiley 2006).

ffonoxume [Monoxume Ompuyame Ompuyame
nbHan neHaA neHaa nbHasA
KOppenayu Koppenayu KOpPenAyus Koppenayus
A ueH a ueH Konuyecme
1.95 0.91 1.89 1.06
1.92 0.95 1.98 1.05
2.02 1.04 Koppensyus Mupcoxa: 1.89 1.09 Koppensayus Mupcoxa:
2.04 1.03 1.88 1.04
1.89 0.91 0.801 1.96 0.93 -0.80
1.98 1.05 2.02 0.93
2.05 1.03 2.00 1.02

Figure 2.16 — Correlations Recovered

2.3.4 Precision and Error Control

One very powerful tool in Monte Carlo simulation is that of precision control. For instance,
how many trials are considered sufficient to run in a complex model? Precision control takes
the guesswork out of estimating the relevant number of trials by allowing the simulation to stop
if the level of prespecified precision is reached.

The precision control functionality lets you set how precise you want your forecast to be.
Generally speaking, as more trials are calculated, the confidence interval narrows and the
statistics become more accurate. The precision control feature in Risk Simulator uses the
characteristic of confidence intervals to determine when a specified accuracy of a statistic has
been reached. For each forecast, you can set the specific confidence interval for the precision
level.

Make sure that you do not confuse three very different terms: error, precision, and confidence.
Although they sound similar, the concepts are significantly different from one another. A
simple illustration is in order. Suppose you are a taco shell manufacturer and are interested in
finding out how many broken taco shells there are on average in a box of 100 shells. One way
to do this is to collect a sample of prepackaged boxes of 100 taco shells, open them, and count
how many of them are actually broken. You manufacture 1 million boxes a day (this is your
population) but you randomly open only 10 boxes (this is your sample size, also known as your
number of trials in a simulation). The number of broken shells in each box is as follows: 24, 22,
4,15, 33, 32, 4, 1, 45, and 2. The calculated average number of broken shells is 18.2. Based on
these 10 samples or trials, the average is 18.2 units, while based on the sample, the 80%
confidence interval is between 2 and 33 units (that is, 80% of the time, the number of broken
shells is between 2 and 33 based on this sample size or number of trials run). However, how
sure are you that 18.2 is the correct average? Are 10 trials sufficient to establish this? The
confidence interval between 2 and 33 is too wide and too variable. Suppose you require a more
accurate average value where the error is =2 taco shells 90% of the time—this means that if
you open all 1 million boxes manufactured in a day, 900,000 of these boxes will have broken
taco shells on average at some mean unit =2 taco shells. How many more taco shell boxes
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would you then need to sample (or trials run) to obtain this level of precision? Here, the 2 taco
shells is the error level while the 90% is the level of precision. If sufficient numbers of trials are
run, then the 90% confidence interval will be identical to the 90% precision level, where a more
precise measure of the average is obtained such that 90% of the time, the etror and, hence, the
confidence will be *2 taco shells. As an example, say the average is 20 units, then the 90%
confidence interval will be between 18 and 22 units with this interval being precise 90% of the
time, where in opening all 1 million boxes, 900,000 of them will have between 18 and 22
broken taco shells. The number of trials required to hit this precision is based on the sampling

error equation of X +Z i , where Z i is the error of 2 taco shells, X is the sample
Jn Jn

average, Z is the standard-normal Z-score obtained from the 90% precision level, s is the
sample standard deviation, and n is the number of trials required to hit this level of error with
the specified precision. Figures 2.17 and 2.18 illustrate how precision control can be performed
on multiple simulated forecasts in Risk Simulator. This feature prevents the user from having to
decide how many trials to run in a simulation and eliminates all possibilities of guesswork.
Figure 2.17 illustrates the forecast chart with a 95% precision level set. This value can be
changed and will be reflected in the Statistics tab as shown in Figure 2.18.
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Figure 2.17 — Setting the Forecast’s Precision Level
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Figure 2.18 — Computing the Error

2.3.5 I'loanmanmne Crarucrugeckoro IlporaosupoBaHma

Most distributions can be defined up to four moments. The first moment describes a
distribution’s location or central tendency (expected returns); the second moment describes its
width or spread (risks); the third moment, its directional skew (most probable events); and the
fourth moment, its peakedness or thickness in the tails (catastrophic losses or gains). All four
moments should be calculated in practice and interpreted to provide a more comprehensive
view of the project under analysis. Risk Simulator provides the results of all four moments in its
Statistics view in the forecast charts.

The first moment of a distribution measures the expected rate of return on a patrticular project.
It measures the location of the project’s scenarios and possible outcomes on average. The
common statistics for the first moment include the mean (average), median (center of a
distribution), and mode (most commonly occurring value). Figure 2.19 illustrates the first
moment—where, in this case, the first moment of this distribution is measured by the mean

(1), ot average, value.

(&3] G1=02 G2

Skew =0
KurtosisXS =

351 1 * H2 2

Figure 2.19 — First Moment
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The second moment measures the spread of a distribution, which is a measutre of risk. The
spread, or width, of a distribution measures the variability of a variable, that is, the potential that
the variable can fall into different regions of the distribution—in other words, the potential
scenatios of outcomes. Figure 2.20 illustrates two distributions with identical first moments
(identical means) but very different second moments or risks. The visualization becomes clearer
in Figure 2.21. As an example, suppose there are two stocks and the first stock’s movements
(illustrated by the darker line) with the smaller fluctuation is compared against the second
stock’s movements (illustrated by the dotted line) with a much higher price fluctuation. Clearly
an investor would view the stock with the wilder fluctuation as riskier because the outcomes of
the more risky stock are relatively more unknown than the less risky stock. The vertical axis in
Figure 2.21 measures the stock prices, thus, the more risky stock has a wider range of potential
outcomes. This range is translated into a distribution’s width (the horizontal axis) in Figure 2.20,
where the wider distribution represents the riskier asset. Hence, width, or spread, of a
distribution measures a variable’s risks.

Notice that in Figure 2.20, both distributions have identical first moments, or central
tendencies, but the distributions atre cleatly very different. This difference in the distributional
width is measurable. Mathematically and statistically, the width, or risk, of a variable can be
measured through several different statistics, including the range, standard deviation (o),
variance, coefficient of variation, and percentiles.

G2
Cmmmmmmmm e >
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<>
Skew =0
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=

Figure 2.20 — Second Moment
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Figure 2.21 — Stock Price Fluctuations

The third moment measures a distribution’s skewness, that is, how the distribution is pulled to
one side or the other. Figure 2.22 illustrates a negative-skew, or left-skew, where the tail of the
distribution points to the left. Figure 2.23 illustrates a positive-skew or right-skew, where the tail
of the distribution points to the right. The mean is always skewed toward the tail of the
distribution, while the median remains constant. Another way of seeing this relationship is that
the mean moves but the standard deviation, vatiance, or width may still remain constant. If the
third moment is not considered, then looking only at the expected returns (e.g., median or
mean) and risk (standard deviation), a positively skewed project might be incorrectly chosen!
For example, if the horizontal axis represents the net revenues of a project, then clearly a left, or
negatively, skewed distribution might be preferred because there is a higher probability of
greater returns (Figure 2.22) as compared to a higher probability for lower level returns (Figure
2.23). Thus, in a skewed distribution, the median is a better measure of returns, as the medians
for both Figures 2.22 and 2.23 are identical, risks are identical, and, hence, a project with a
negatively skewed distribution of net profits is a better choice. Failure to account for a project’s
distributional skewness may mean that the incorrect project could be chosen (e.g., two projects
may have identical first and second moments, that is, they both have identical returns and risk
profiles, but their distributional skews may be very different).

01— O
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Figure 2.22 — Third Moment (Left Skew)
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Figure 2.23 — Third Moment (Right Skew)

The fourth moment, or kurtosis, measures the peakedness of a distribution. Figure 2.24
illustrates this effect. The background (denoted by the dotted line) is a normal distribution with
a kurtosis of 3.0, or an excess kurtosis (KurtosisXS) of 0.0. Risk Simulatot’s results show the
KurtosisXS value, using 0 as the normal level of kurtosis, which means that a negative
KurtosisXS indicates flatter tails (platykurtic distributions like the uniform distribution), while
positive values indicate fatter tails (leptokurtic distributions like the student’s t or lognormal
distributions). The distribution depicted by the bold line has a higher excess kurtosis, thus the
area under the curve is thicker at the tails with less area in the central body. This condition has
major impacts on risk analysis. As shown for the two distributions in Figure 2.24, the first three
moments (mean, standard deviation, and skewness) can be identical, but the fourth moment
(kurtosis) is different. This condition means that, although the returns and risks are identical,
the probabilities of extreme and catastrophic events (potential large losses or large gains)
occurring are higher for a high kurtosis distribution (e.g., stock market returns are leptokurtic,
ot have high kurtosis). Ignoting a project’s kurtosis may be detrimental. Typically, a higher
excess kurtosis value indicates that the downside risks are higher (e.g., the Value at Risk of a
project might be significant).

01 = O

Skew = 0

Kurtosis > 0

W= e

Figure 2.24 — Fourth Moment

Ever wonder why these risk statistics are called “moments”™ In mathematical vernacular,
moment means raised to the power of some value. In other words, the third moment implies that
in an equation, three is most probably the highest power. In fact, the equations below illustrate
the mathematical functions and applications of some moments for a sample statistic. For
example, notice that the highest power for the first moment average is one, the second moment
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standard deviation is two, the third moment skew is three, and the highest power for the fourth
moment is four.

First Moment: Arithmetic Average or Simple Mean (Sample)

X=4L The Excel equivalent function is AVERAGE.

The Excel equivalent function is STDEV for a sample standard deviation.
The Excel equivalent function is STDEVP for a population standard deviation.
Third Moment: Skew (Sample)
n Z“: (% -X%)°
(n=1)(n-2)4=+ S
The Excel equivalent function is SKEW.

skew =

Fourth Moment: Kurtosis (Sample)

n(n+1) Z”:(xi—i)“_ 3(n-1)°
(n-1)(n-2)(n-3)F s (n-2)(n-3)

The Excel equivalent function is KURT.

kurtosis =
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2.3.6 IloHumaHME pacIIPEACACHHA BEPOATHOCTEH AN
MosearpoBaaua Merosom Morre-Kapao

This section demonstrates the power of Monte Carlo simulation, but to get started with
simulation, one first needs to understand the concept of probability distributions. To begin to
understand probability, consider this example: You want to look at the distribution of
nonexempt wages within one department of a large company. First, you gather raw data—in
this case, the wages of each nonexempt employee in the department. Second, you organize the
data into a meaningful format and plot the data as a frequency distribution on a chart. To create
a frequency distribution, you divide the wages into group intervals and list these intervals on the
chart’s horizontal axis. Then you list the number or frequency of employees in each interval on
the chart’s vertical axis. Now you can easily see the distribution of nonexempt wages within the
department.

A glance at the chart illustrated in Figure 2.25 reveals that most of the employees
(approximately 60 out of a total of 180) earn from $7.00 to $9.00 per hour.
60
50
Number of 40
Employees
30

20

10

7.00 7.50 8.00 8.50 9.00

Hourly Wage Ranges in Dollars

Figure 2.25 — Frequency Histogram I

You can chart this data as a probability distribution. A probability distribution shows the
number of employees in each interval as a fraction of the total number of employees. To create
a probability distribution, you divide the number of employees in each interval by the total
number of employees and list the results on the chart’s vertical axis.

The chart in Figure 2.26 shows you the number of employees in each wage group as a fraction
of all employees; you can estimate the likelihood or probability that an employee drawn at
random from the whole group earns a wage within a given interval. For example, assuming the
same conditions exist at the time the sample was taken, the probability is 0.33 (a one in three
chance) that an employee drawn at random from the whole group earns between $8.00 and
$8.50 an hout.
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Figure 2.26 — Frequency Histogram II

Probability distributions are either discrete or continuous. Discrete probability distributions
describe distinct values, usually integers, with no intermediate values and are shown as a series
of vertical bars. A discrete distribution, for example, might describe the number of heads in
four flips of a coin as 0, 1, 2, 3, or 4. Continuous distributions are actually mathematical
abstractions because they assume the existence of every possible intermediate value between
two numbers. That is, a continuous distribution assumes there is an infinite number of values
between any two points in the distribution. However, in many situations, you can effectively use
a continuous distribution to approximate a discrete distribution even though the continuous
model does not necessarily describe the situation exactly.

Plotting data is one guide to selecting a probability distribution. The following steps provide
another process for selecting probability distributions that best describe the uncertain variables
in your spreadsheets:

e JLook at the variable in question. List everything you know about the conditions
surrounding this variable. You might be able to gather valuable information about the
uncertain variable from historical data. If historical data are not available, use your own
judgment, based on expetience, listing everything you know about the uncertain
variable.

e Review the descriptions of the probability distributions.

e  Seclect the distribution that characterizes this variable. A distribution charactetizes a
variable when the conditions of the distribution match those of the variable.

Monte Carlo simulation in its simplest form is a random number generator that is useful for
forecasting, estimation, and risk analysis. A simulation calculates numerous scenarios of a model
by repeatedly picking values from a user-predefined probability distribution for the uncertain
variables and using those values for the model. As all those scenatios produce associated results
in a model, each scenario can have a forecast. Forecasts are events (usually with formulas or
functions) that you define as important outputs of the model. These usually are events such as
totals, net profit, or gross expenses.
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Simplistically, think of the Monte Carlo simulation approach as repeatedly picking golf balls out
of a large basket with replacement. The size and shape of the basket depend on the
distributional input assumption (e.g., a normal distribution with a mean of 100 and a standard
deviation of 10, versus a uniform distribution or a triangular distribution) where some baskets
are deeper or more symmetrical than others, allowing certain balls to be pulled out more
frequently than others. The number of balls pulled repeatedly depends on the number of #rials
simulated. For a large model with multiple related assumptions, imagine a very large basket
wherein many smaller baskets reside. Each small basket has its own set of golf balls that are
bouncing around. Sometimes these small baskets are linked with each other (if there is a
correlation between the variables) and the golf balls are bouncing in tandem, while other times
the balls are bouncing independent of one another. The balls that are picked each time from
these interactions within the model (the large central basket) are tabulated and recorded,
providing a forecast output result of the simulation.

With Monte Carlo simulation, Risk Simulator generates random values for each assumption’s
probability distribution that are totally independent. In other words, the random value selected
for one trial has no effect on the next random value generated. Use Monte Carlo sampling
when you want to simulate real-wotld what-if scenarios for your spreadsheet model.

The two following sections provide a detailed listing of the different types of discrete and
continuous probability distributions that can be used in Monte Catlo simulation.
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The Bernoulli distribution is a discrete distribution with two outcomes (e.g., head or tails,
success or failure, O or 1). It is the binomial distribution with one trial and can be used to
simulate Yes/No or Success/Failure conditions. This distribution is the fundamental building
block of other more complex distributions. For instance:

e  Binomial distribution: a Bernoulli distribution with higher number of # total trials that
computes the probability of x successes within this total number of trials.

e Geometric distribution: a Bernoulli distribution with higher number of trials that
computes the number of failures required before the first success occurs.

e Negative binomial distribution: a Bernoulli distribution with higher number of trials
that computes the number of failures before the Xth success occurs.

"The mathematical constructs for the Bernoulli distribution are as follows:

1-p forx=0
P(n) :{ p forx
p forx=1
or
P(n)=p*-p)""
Mean = p
Standard Deviation =./p(1-p)
Skewness= _ L= 2P

p(l-p)
Eixcess Knrtosis = 8P° —8p+1
pd-p)

Probability of success (p) is the only distributional parameter. Also, it is important to note that
there is only one trial in the Bernoulli distribution, and the resulting simulated value is either O
or 1.

Input requirements:

Probability of success > 0 and <1 (i.e., 0.0001 = p < 0.9999).

The binomial distribution describes the number of times a particular event occurs in a fixed
number of trials, such as the number of heads in 10 flips of a coin or the number of defective
items out of 50 items chosen.

Conditions
The three conditions undetlying the binomial distribution ate:
e Tor cach trial, only two outcomes are possible that are mutually exclusive.

e The trials are independent—what happens in the first trial does not affect the next
trial.
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e The probability of an event occurring remains the same from trial to trial.

The mathematical constructs for the binomial distribution are as follows:

I
P(x) S p*@-p)™™ forn>0;x=0,1,2,...njand0< p <1
x!(n—x)!

Mean =np

Standard Deviation =./np(1- p)

Skewness= _1-2p
ynp-p)
Eess Kurtosis = 8 p’-6p+1
np(—p)

Probability of success (p) and the integer number of total trials (#) are the distributional
parameters. The number of successful trials is denoted x. It is important to note that probability
of success (p) of 0 or 1 are trivial conditions that do not require any simulations and, hence, are
not allowed in the software.

Input requirements:
Probability of success > 0 and <1 (i.e., 0.0001 = p < 0.9999).

Number of trials = 1 or positive integers and < 1000 (for larger trials, use the normal
distribution with the relevant computed binomial mean and standard deviation as the normal
distribution’s parameters).

The discrete uniform distribution is also known as the equally likely outcomes distribution, where
the distribution has a set of N elements and each element has the same probability. This
distribution is related to the uniform distribution but its elements are discrete and not
continuous.

The mathematical constructs for the discrete uniform distribution are as follows:
1

P(x)=—
N

N +1
Mean = 2 ranked value

/ (N=D(N+2)
Standard Deviation = 12 ranked value

Skewness = 0 (i.e., the distribution is perfectly symmetrical)

—6(N%+1)
Eixess Kurtosis = SN =D(N +1) ranked value
Input requirements:

Minimum < maximum and both must be integers (negative integers and zero are allowed).
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The geomettric distribution desctibes the number of trials until the first successful occurrence,
such as the number of times you need to spin a roulette wheel before you win.

Conditions
The three conditions underlying the geometric distribution are:
e The number of trials is not fixed.
e The trials continue until the first success.
e The probability of success is the same from trial to trial.
The mathematical constructs for the geometric distribution are as follows:

P(x)= p(l-p)** forO<p<landx=12,..,n

Mean = 1 1
p

Standard Deviation = 1—2p
Skewness= 2= P_

Fp

2
Excess Kurtosis = P~ —6P+6
1-p

Probability of success (p) is the only distributional parameter. The number of successful trials
simulated is denoted x;, which can only take on positive integers.

Input requirements:

Probability of success > 0 and < 1 (ie., 0.0001 < p < 0.9999). It is important to note that
probability of success (p) of 0 or 1 are trivial conditions that do not require any simulations and,
hence, ate not allowed in the software.

The hypergeometric distribution is similar to the binomial distribution in that both describe the
number of times a particular event occurs in a fixed number of trials. The difference is that
binomial distribution trials are independent, whereas hypergeometric distribution trials change
the probability for each subsequent trial and are called “trials without replacement.” For
example, suppose a box of manufactured parts is known to contain some defective parts. You
choose a part from the box, find it is defective, and remove the part from the box. If you
choose another part from the box, the probability that it is defective is somewhat lower than
for the first part because you have already removed a defective part. If you had replaced the
defective part, the probabilities would have remained the same, and the process would have
satisfied the conditions for a binomial distribution.
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Conditions
The three conditions undetlying the hypergeometric distribution are:

e The total number of items or elements (the population size) is a fixed number, a finite
population. The population size must be less than or equal to 1,750.

e The sample size (the number of trials) represents a portion of the population.
e The known initial probability of success in the population changes after each trial.

The mathematical constructs for the hypergeometric distribution are as follows:

(N,)! (N-N,)!

p(x) = 2N =X (n_xlzl!,(N “N O o x = Max(n— (N = N,),0), .. Min(n,N,.)
NN —n)!

Mean = N,n

N
Standard Deviation = \/ (N =N,)N,n(N —n)

NZ(N -1)
Skewness = \/ N-1
(N =N,)N,n(N —n)

Exccess Kurtosis = complex: function

The number of items in the population or Population Size (IN), trials sampled or Sample Size
(n), and number of items in the population that have the successful trait or Population
Successes (IN,) are the distributional parameters. The number of successful trials is denoted x.

Input requirements:

Population Size = 2 and integer.

Sample Size > 0 and integer.

Population Successes > 0 and integer.
Population Size > Population Successes.
Sample Size < Population Successes.

Population Size < 1750.

The negative binomial distribution is useful for modeling the distribution of the number of
additional trials required in addition to the number of successful occurrences required (K). For
instance, in order to close a total of 10 sales opportunities, how many extra sales calls would
you need to make above 10 calls given some probability of success in each call? The x-axis
shows the number of additional calls required or the number of failed calls. The number of
trials is not fixed, the trials continue until the Rth success, and the probability of success is the
same from trial to trial. Probability of success (p) and number of successes required (R) are the
distributional parameters. It is essentially a superdistribution of the geometric and binomial
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distributions. This distribution shows the probabilities of each number of trials in excess of K to
produce the required success K.

Conditions

The three conditions undetlying the negative binomial distribution are:
e The number of trials is not fixed.
e The trials continue until the sth success.
e The probability of success is the same from trial to trial.

The mathematical constructs for the negative binomial distribution are as follows:

1!
—1)X
Mean =M
Standard Deviation = r(1—2 )
Skewness = 2-p
rd-p)
Excess Kurtosis = m
rd-p)

Probability of success (p) and required successes (R) are the distributional parameters.
Input requirements:
Successes required must be positive integers > 0 and < 8000.

Probability of success > 0 and < 1 (that is, 0.0001 < p < 0.9999). 1t is important to note that
probability of success (p) of 0 or 1 are trivial conditions that do not require any simulations and,
hence, ate not allowed in the software.

The Pascal distribution is useful for modeling the distribution of the number of total trials
required to obtain the number of successful occurrences required. For instance, to close a total
of 10 sales opportunities, how many total sales calls would you need to make given some
probability of success in each call? The x-axis shows the total number of calls required, which
includes successful and failed calls. The number of trials is not fixed, the trials continue until the
Rth success, and the probability of success is the same from trial to trial. Pascal distribution is
related to the negative binomial distribution. Negative binomial distribution computes the
number of events required in addition to the number of successes required given some
probability (in other words, the total failures), whereas the Pascal distribution computes the
total number of events required (in other words, the sum of failures and successes) to achieve
the successes required given some probability. Successes required and probability, are the two
distributional parameters.
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Conditions

The three conditions underlying the negative binomial distribution are:
o The number of trials is not fixed.
e The trials continue until the rth success.

e The probability of success is the same from ttial to trial.

The mathematical constructs for the Pascal distribution are shown below:

(X_l)! S X-S

— —p°(1- forallx>s
f(X)=19 (x=5)!(s-1)! Pra=P)

0 otherwise

k 1

z& ps(@A-p)*S forallx > s
F(x) =<4 (x=s)!(s-1)!

0 otherwise
Mean =5

p
Standard Deviation =./s(1- p) p?
Skewness = 2-p

Jrd-p)

2
Excess Kurtosis = w
rd-p)

Successes Required and Probability are the distributional parameters.
Input requirements:
Successes required > 0 and is an integer.

0 < Probability < 1.

The Poisson distribution describes the number of times an event occurs in a given interval,
such as the number of telephone calls per minute or the number of errors per page in a
document.

Conditions

The three conditions undetlying the Poisson distribution are:
e The number of possible occurrences in any interval is unlimited.

e The occurrences are independent. The number of occutrences in one interval does not
affect the number of occurrences in other intervals.

e The average number of occurrences must remain the same from interval to interval.
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The mathematical constructs for the Poisson are as follows:

-4 9X

P(x)ze | forxand A >0
x1

Mean = 4

Standard Deviation = \/7

Skewness = i

A
) 1
Excess Kurtosis = Z

Rate, or Lambda (4), is the only distributional parameter.

Input requirements:

Rate > 0 and < 1000 (i.e., 0.0001 < rate < 1000).
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The arcsine distribution is U-shaped and is a special case of the beta distribution when both
shape and scale are equal to 0.5. Values close to the minimum and maximum have high
probabilities of occurrence whereas values between these two extremes have very small
probabilities of occurrence. Minimum and maximum are the distributional parameters.

The mathematical constructs for the Arcsine distribution are shown below. The probability
density function (PDF) is denoted f{x) and the cumulative distribution function (CDF) is
denoted F(x).

1
——— for0<x<1
f(x) =4 7 /X(1—X)
0 otherwise
0 x<0

F() =4 2sin(Vx) for 0< x <1
T
1 x>1

Mean — Min + Max

H 2
Standard Deviation = w

Stkewness = 0 for all inputs

Excess Kurtosis = 1.5 for all inputs

Minimum and maximum are the distributional parameters.
Input requirements:

Maximum > minimum (either input parameter can be positive, negative, or zero).

The beta distribution is very flexible and is commonly used to represent variability over a fixed
range. One of the more important applications of the beta distribution is its use as a conjugate
distribution for the parameter of a Bernoulli distribution. In this application, the beta
distribution is used to represent the uncertainty in the probability of occurrence of an event. It
is also used to describe empirical data and predict the random behavior of percentages and
fractions, as the range of outcomes is typically between 0 and 1.

The value of the beta distribution lies in the wide vatiety of shapes it can assume when you vary
the two parameters, alpha and beta. If the parameters are equal, the distribution is symmetrical.
If either parameter is 1 and the other parameter is greater than 1, the distribution is J-shaped. If
alpha is less than beta, the distribution is said to be positively skewed (most of the values are
near the minimum value). If alpha is greater than beta, the distribution is negatively skewed
(most of the values are near the maximum value).
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"The mathematical constructs for the beta distribution are as follows:

(X)(a—l) - X)(ﬂ—l)
L)L (B)
I'(a+pB)

f(x)= fora>0;>0;x>0

Mean =

a+pf

Standard Deviation = \/ Za,B
(a+B)Y[A+a+p)

Skewness = 2f-alt+a+p
@+a+p)Wap

Exccess Kurtosis = 3(0{-1—,6’—!—1)[0(/3(0{—!—/?—6)+2(0!+ﬂ)2]_3
aff(a+ f+2(ax+ [+3)

Alpha (@) and beta () are the two distributional shape parameters, and /" is the Gamma
function.

Conditions
The two conditions undetlying the beta distribution are:
e The uncertain variable is a random value between 0 and a positive value.
e The shape of the distribution can be specified using two positive values.
Input requirements:

Alpha and beta both > 0 and can be any positive value.

Beta 3 and Beta 4 The original Beta distribution only takes two inputs, Alpha and Beta shape parameters.
However, the output of the simulated value is between 0 and 1. In the Beta 3 distribution, we
add an extra parameter called Location or Shift, where we are not free to move away from this
0 to 1 output limitation, therefore the Beta 3 distribution is also known as a Shifted Beta
distribution. Similarly, the Beta 4 distribution adds two input parameters, Location or Shift, and
Factor. The original beta distribution is multiplied by the factor and shifted by the location, and,
therefore the Beta 4 is also known as the Multiplicative Shifted Beta distribution.

Distributions

The mathematical constructs for the Beta 3 and Beta 4 distributions are based on those in the
Beta distribution, with the relevant shifts and factorial multiplication (e.g., the PDF and CDF
will be adjusted by the shift and factor, and some of the moments, such as the mean, will
similarly be affected; the standard deviation, in contrast, is only affected by the factorial
multiplication, whereas the remaining moments are not affected at all).

Input requirements:
Location >=< 0 (location can take on any positive or negative value including zero).

Factor > 0.

47/ Page



Cauchy
Distribution, or
Lorentzian or Breit-
Wigner Distribution
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Distribution

RISK SIMULATOR

The Cauchy distribution, also called the Lorentzian or Breit-Wigner distribution, is a continuous
distribution describing resonance behavior. It also describes the distribution of horizontal
distances at which a line segment tilted at a random angle cuts the x-axis.

The mathematical constructs for the cauchy or Lorentzian distribution are as follows:

1 /2
=5
T (X—-m) +y°/4
The Cauchy distribution is a special case because it does not have any theoretical moments

(mean, standard deviation, skewness, and kurtosis) as they are all undefined.

Mode location (o) and scale (B) are the only two parameters in this distribution. The location
parameter specifies the peak or mode of the distribution, while the scale parameter specifies the
half-width at half-maximum of the distribution. In addition, the mean and vatiance of a
Cauchy, or Lorentzian, distribution are undefined.

In addition, the Cauchy distribution is the Student’s T distribution with only 1 degree of
freedom. This distribution is also constructed by taking the ratio of two standard normal
distributions (normal distributions with a mean of zero and a variance of one) that are
independent of one another.

Input requirements:
Location (Alpha) can be any value.

Scale (Beta) > 0 and can be any positive value.

The chi-square distribution is a probability distribution used predominantly in hypothesis
testing, and is related to the gamma and standard normal distributions. For instance, the sum of
independent normal distributions is distributed as a chi-square () with & degrees of freedom:

d
ZP+ 22+ 42~}

The mathematical constructs for the chi-square distribution are as follows:

0 57k/2

f(X)= . xk/Z—le—x/Z forallx>0
T(k/2)

Mean = £

Standard Deviation = \/ﬁ

Skewness = 9 \F
k

Excess Kurtosis = E
k

I'is the gamma function. Degrees of freedom, £, is the only distributional parameter.

The chi-square distribution can also be modeled using a gamma distribution by setting the
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Shape parameter equal to E and the scale equal to 2S 2 where S is the scale.

Input requirements:

Degrees of freedom > 1 and must be an integer < 300.

The cosine distribution looks like a logistic distribution where the median value between the
minimum and maximum have the highest peak or mode, carrying the maximum probability of
occurrence, while the extreme tails close to the minimum and maximum values have lower
probabilities. Minimum and maximum are the distributional parameters.

The mathematical constructs for the Cosine distribution are shown below:
L cos| 222 | for min < x < max
f(xX)=<2b b
0 otherwise

min-+ max max—min
where a:Tand b=——
T

1 1+sin(ﬂj for min < x < max
F(x)=<2 b

1 for x > max

Mean = M

)’(7* ~8)

2

Standard Deviation = \/ (Max - '\1"‘
T

Skewness is always equal to 0

_ 4
Excess Kurtosis = M
5(z° —6)
Minimum and maximum are the distributional parameters.
Input requirements:

Maximum > minimum (either input parameter can be positive, negative, or zero).

The double log distribution looks like the Cauchy distribution where the central tendency is
peaked and carries the maximum value probability density but declines faster the further it gets
away from the center, creating a symmetrical distribution with an extreme peak in between the
minimum and maximum values. Minimum and maximum are the distributional parameters.
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The mathematical constructs for the Double Log distribution are shown below:
-1, (|x-4| :
—In| —— | for min < x < max
f(x)=<2b b
0 otherwise

min+ max max— min
where a:Tand b :T

1_[MJ|:1_|n(MH formin<x<a
2 2b b

F(X):
X-a X—a

1+ | | 1-In u for a < X < max

2 2b b
Mean = Min -+ Max

2
_ )2

Standard Deviation = w

Skewness is always equal to 0

Exccess Kurtosis is a complex: function and not easily represented
Minimum and maximum are the distributional parameters.
Input requirements:

Maximum > minimum (either input parameter can be positive, negative, or zeto).

The Erlang distribution is the same as the Gamma distribution with the requirement that the
Alpha or shape parameter must be a positive integer. An example application of the Erlang
distribution is the calibration of the rate of transition of elements through a system of
compartments. Such systems are widely used in biology and ecology (e.g., in epidemiology, an
individual may progress at an exponential rate from being healthy to becoming a disease cattier,
and continue exponentially from being a carrier to being infectious). Alpha (also known as
shape) and Beta (also known as scale) are the distributional parameters.

The mathematical constructs for the Erlang distribution are shown below:

a-1
P
f(x)= 'B—for x>0
Bla-1)
0 otherwise

S (x1 B)
1-e* (X—for x>0
F(x)= ; i!

0 otherwise
Mean = af

Standard Deviation = /a3
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Skew = i

Ja

Excess Kurtosis = E -3
a

Alpha and Beta are the distributional parameters.
Input requirements:

Alpha (Shape) > 0 and is an Integer

Beta (Scale) > 0

The exponential distribution is widely used to describe events recurring at random points in
time, such as the time between failures of electronic equipment or the time between arrivals at a
service booth. It is related to the Poisson distribution, which describes the number of
occurrences of an event in a given interval of time. An important characteristic of the
exponential distribution is the “memoryless” property, which means that the future lifetime of a
given object has the same distribution regardless of the time it existed. In other words, time has
no effect on future outcomes.

Conditions
The condition underlying the exponential distribution is:
e The exponential distribution describes the amount of time between occurrences.

The mathematical constructs for the exponential distribution are as follows:

f(x)=4e" forx>0;4>0

Mean = l
A

Standard Deviation = 1

Skewness = 2 (this value applies to all success rate A inputs)
Exccess Kurtosis = 6 (this value applies to all success rate A inputs)

Success rate (4) is the only distributional parameter. The number of successful trials is denoted
x.

Input requirements:

Rate > 0.

The Exponential 2 distribution uses the same constructs as the original Exponential distribution
but adds a Location or Shift parameter. The Exponential distribution starts from a minimum
value of 0, whereas this Exponential 2 or Shifted Exponential, distribution shifts the starting
location to any other value.
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Rate, or Lambda, and Location, or Shift, are the distributional parameters.
Input requirements:
Rate (Lambda) > 0.

Location can be any positive or negative value including zero.

The extreme value distribution (Type 1) is commonly used to describe the largest value of a
response over a petiod of time, for example, in flood flows, rainfall, and earthquakes. Other
applications include the breaking strengths of matetials, construction design, and aircraft loads
and tolerances. The extreme value distribution is also known as the Gumbel distribution.

The mathematical constructs for the extreme value distribution are as follows:

X—a

f(x)= ; ze? wherez=¢ # for S > 0;and any value of x and &

Mean = o +0.5772158

Standard Deviation = | B2
6

Skewness = 12‘/5(1-2?20569) —1.13955 (this applies for all values of mode and scale)
7

Excess Kurtosis = 5.4 (this applies for all values of mode and scale)

Mode (@) and scale (f) ate the distributional parametets.
Calculating Parameters

There are two standard parameters for the extreme value distribution: mode and scale. The
mode parameter is the most likely value for the variable (the highest point on the probability
distribution). After you select the mode parameter, you can estimate the scale parameter. The
scale parameter is a number greater than 0. The larger the scale parameter, the greater the
variance.

Input requirements:
Mode Alpha can be any value.

Scale Beta > 0.

The F distribution, also known as the Fisher-Snedecor distribution, is another continuous
distribution used most frequently for hypothesis testing. Specifically, it is used to test the
statistical difference between two variances in analysis of variance tests and likelihood ratio
tests. The I distribution with the numerator degree of freedom 7 and denominator degree of
freedom 72 is related to the chi-square distribution in that:

K
Z; ~F
X lm

n,m
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m
Mean = ——
m-2

2m*(m+n-2)
n(m-2)*(m-4)

Skewness = 2(m+2n-2) 2(m—4)
m-6 n(m+n-2)

. . _ 12(-16+20m —8m? +m°® + 44n —32mn +5m®n — 22n® + 5mn®
xceess Kurtosis =
n(m—-6)(m-8)(n+m-2)

Standard Deviation = SJorallm >4

The numerator degree of freedom 7 and denominator degree of freedom # are the only
distributional parameters.

Input requirements:

Degrees of freedom numerator & degrees of freedom denominator must both be integers > 0

The gamma distribution applies to a wide range of physical quantities and is related to other
distributions: lognormal, exponential, Pascal, Erlang, Poisson, and chi-square. It is used in
meteorological processes to represent pollutant concentrations and precipitation quantities. The
gamma distribution is also used to measure the time between the occurrence of events when
the event process is not completely random. Other applications of the gamma distribution
include inventory control, economic theory, and insurance tisk theoty.

Conditions

The gamma distribution is most often used as the distribution of the amount of time until the
rth occurrence of an event in a Poisson process. When used in this fashion, the three
conditions underlying the gamma distribution are:

e The number of possible occurrences in any unit of measurement is not limited to a
fixed number.

e The occurrences are independent. The number of occurrences in one unit of
measurement does not affect the number of occurrences in other units.

e The average number of occutrences must remain the same from unit to unit.

The mathematical constructs for the gamma distribution are as follows:
a-1 X
5
\B)
L(a)p
Mean = o
Standard Deviation = | a3

f(x) =

with any valueof ¢ >0and 8 >0

Skewness = i
a
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Excess Kurtosis = E

o

Shape parameter alpha () and scale parameter beta (f) ate the distributional parameters, and 7~
is the Gamma function. When the alpha parameter is a positive integer, the gamma distribution
is called the Erlang distribution, used to predict waiting times in queuing systems, where the
Erlang distribution is the sum of independent and identically distributed random vatiables each
having a memoryless exponential distribution. Setting 7 as the number of these random
variables, the mathematical construct of the Erlang distribution is:

f(x)= E for all x> 0 and all positive integers of 7
(n=1!

Input requirements:

Scale beta > 0 and can be any positive value.

Shape alpha = 0.05 and any positive value.

Location can be any value.

The Laplace distribution is also sometimes called the double exponential distribution because it
can be constructed with two exponential distributions (with an additional location parameter)
spliced together back-to-back, creating an unusual peak in the middle. The probability density
function of the Laplace distribution is reminiscent of the normal distribution. However,
whereas the normal distribution is expressed in terms of the squared difference from the mean,
the Laplace density is expressed in terms of the absolute difference from the mean, making the
Laplace distribution’s tails fatter than those of the normal distribution. When the location
parameter is set to zero, the Laplace distribution’s random vatriable is exponentially distributed
with an inverse of the scale parameter. Alpha (also known as location) and Beta (also known as
scale) are the distributional parameters.

The mathematical constructs for the Laplace distribution are shown below:

F(%) =$exp(—¥j

1 X—a
Eexp {—} when X <
F(x)=
l—lexp{—x_—a} when x> &
2 B

Mean =«
Standard Deviation = 1.41424
Stkewness is always equal to O as it is a symmetrical distribution

Excess Kurtosis is always equal to 3
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Input requirements:
Alpha (Location) can take on any positive or negative value including zero.

Beta (Scale) > 0.

The logistic distribution is commonly used to describe growth, that is, the size of a population
expressed as a function of a time variable. It also can be used to desctribe chemical reactions and
the course of growth for a population or individual.

The mathematical constructs for the logistic distribution are as follows:

a—X

B
f(x)= 672 for any valueof and

a—Xx

£ 1+e?

Mean =«

Standard Deviation = %ﬂ'zﬂz

Stkewness = 0 (this applies to all mean and scale inputs)
Exess Kurtosis = 1.2 (this applies to all mean and scale inputs)
Mean (@) and scale (f) ate the distributional parameters.

Calculating Parameters

There are two standard parameters for the logistic distribution: mean and scale. The mean
parameter is the average value, which for this distribution is the same as the mode because this
is a symmetrical distribution. After you select the mean parameter, you can estimate the scale
parameter. The scale parameter is a number greater than 0. The larger the scale parameter, the
greater the variance.

Input requirements:
Scale Beta > 0 and can be any positive value.

Mean Alpha can be any value.

The lognormal distribution is widely used in situations where values are positively skewed, for
example, in financial analysis for security valuation or in real estate for property valuation, and
where values cannot fall below zero.

Stock prices are usually positively skewed rather than normally (symmetrically) distributed.
Stock prices exhibit this trend because they cannot fall below the lower limit of zero but might
increase to any price without limit. Similarly, real estate prices illustrate positive skewness as
property values cannot become negative.
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Conditions
The three conditions undetlying the lognormal distribution are:
e The uncertain variable can increase without limits but cannot fall below zero.
e The uncertain variable is positively skewed, with most of the values near the lower
limit.
e The natural logarithm of the uncertain variable yields a normal distribution.

Generally, if the coefficient of variability is greater than 30%, use a lognormal distribution.
Otherwise, use the normal distribution.

The mathematical constructs for the lognormal distribution are as follows:

_[n(x)-In()?
1 2[In(o)]? .
f(x) e forx>0; u>0ando >0

X2z In(o)

2
Mean = exp(y +%J

Standard Deviation = \/EXp(O_ S+ 24 IeXp(O_Z )_ 1]

Skewness = [ml (2+exp(c?))

Exccess Kurtosis = eXp(A'GZ )+ 2 exp(352 )+ 36Xp(20'2 )— 6

Mean (u) and standard deviation (G) are the distributional parameters.
Input requirements:

Mean and standard deviation both > 0 and can be any positive value.
Lognormal Parameter Sets

By default, the lognormal distribution uses the arithmetic mean and standard deviation. For
applications for which historical data are available, it is more approptiate to use either the
logarithmic mean and standard deviation, or the geometric mean and standard deviation.

The Lognormal 3 distribution uses the same constructs as the original Lognormal distribution
but adds a Location, or Shift, parameter. The Lognormal distribution starts from a minimum
value of 0, whereas this Lognormal 3, or Shifted Lognormal distribution shifts the starting
location to any other value.

Mean, Standard Deviation, and Location (Shift) are the distributional parameters.
Input requirements:

Mean > 0.

Standard Deviation > 0.

Location can be any positive or negative value including zero.

50| Page



Normal
Distribution

Parabolic
Distribution

RISK SIMULATOR

The normal distribution is the most important distribution in probability theory because it
describes many natural phenomena, such as people’s IQs or heights. Decision makers can use
the normal distribution to describe uncertain variables such as the inflation rate or the future
price of gasoline.

Conditions
The three conditions underlying the normal distribution are:
e Some value of the uncertain variable is the most likely (the mean of the distribution).

e The uncertain variable could as likely be above the mean as it could be below the mean
(symmetrical about the mean).

e The uncertain variable is more likely to be in the vicinity of the mean than further
away.

The mathematical constructs for the normal distribution are as follows:

1 _(X_,”)2
f(x)= e 2 forall valuesof x
V2ro and Y; while 6 > 0
Mean = u

Standard Deviation =o

Skewness = 0 (this applies to all inputs of mean and standard deviation)

Excess Kurtosis = 0 (this applies to all inputs of mean and standard deviation)
Mean (W) and standard deviation (o) are the distributional parameters.
Input requirements:

Standard deviation > 0 and can be any positive value.

Mean can take on any value.

The parabolic distribution is a special case of the beta distribution when Shape = Scale = 2.
Values close to the minimum and maximum have low probabilities of occurrence, whereas
values between these two extremes have higher probabilities or occurrence. Minimum and
maximum are the distributional parameters.

The mathematical constructs for the Parabolic distribution are shown below:

f0 - (X)(a—l) - X)(ﬁ—l)
C(a)I(B)
I'a+p)

fora>0; >0;x>0

Where the functional form above is for a Beta distribution, and for a Parabolic function, we set
Alpha = Beta = 2 and a shift of location in Minimum, with a multiplicative factor of (Maximum
— Minimum).
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Mean = Min + Max

(Max — Min)®
20

Standard Deviation =

Skewness = 0

Exccess Kurtosis = —0.8571
Minimum and Maximum are the distributional parameters.
Input requirements:

Maximum > minimum (either input parameter can be positive, negative, or zero).

The Pareto distribution is widely used for the investigation of distributions associated with such
empirical phenomena as city population sizes, the occurrence of natural resources, the size of
companies, personal incomes, stock price fluctuations, and etror clustering in communication
circuits.
The mathematical constructs for the Pareto are as follows:

p

f(x)=W forx>L

AL

mean=——
p-1

A
(5-D*(5-2)

/;—2{2([”1)}
B-3

standard deviation =

skewness = B

6(B°+p*-68-2)
exess kurtosis = BB=3)(B—-4)

Shape (o) and Location (B) are the distributional parameters.
Calculating Parameters

There are two standard parameters for the Pareto distribution: location and shape. The location
parameter is the lower bound for the variable. After you select the location parameter, you can
estimate the shape parameter. The shape parameter is a number greater than 0, usually greater
than 1. The larger the shape parameter, the smaller the variance and the thicker the right tail of
the distribution.

Input requirements:

Location > 0 and can be any positive value

Shape = 0.05.
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The Pearson V distribution is related to the Inverse Gamma distribution, where it is the
reciprocal of the variable distributed according to the Gamma distribution. Pearson V
distribution is also used to model time delays where there is almost certainty of some minimum
delay and the maximum delay is unbounded, for example, delay in arrival of emergency services
and time to repair a machine. Alpha (also known as shape) and Beta (also known as scale) are
the distributional parameters.

Pearson V
Distribution

The mathematical constructs for the Pearson V distribution are shown below:
—(a+1) 4-BIx
X (]
f(X)=—g0—
B T(a)

F(x) :—F(iﬁ'(ﬁ )’ )

Mean :L
a-1

ﬁz

Standard Deviation =, [——=——
(=D (ax-2)

30« — 66

Excess Kurtosis = —————
(@—3)(@—4)

Input requirements:
Alpha (Shape) > 0.
Beta (Scale) > 0.

The Pearson VI distribution is related to the Gamma distribution, where it is the rational
function of two variables distributed according to two Gamma distributions. Alpha 1 (also
known as shape 1), Alpha 2 (also known as shape 2), and Beta (also known as scale) are the
distributional parameters.

Pearson VI
Distribution

The mathematical constructs for the Pearson VI distribution are shown below:

- (x/py*
B Bay, o) [1+(x/] )]

X
F(x)= FB£x+ﬂj

f(x)
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Pa

a, —

Mean =

,Bza1(a1 +a,-1)
(az _1)2 (az - 2)

Skew = 2 a,—2 200+, -1
a (o, +a,-1) a,-3

Standard Deviation =

Excess Kurtosis =

(e, —2) { 2(e, 1)’

+(e, +5)}—3
(=3, =) | (e +a,-1)

Input requirements:
Alpha 1 (Shape 1) > 0.
Alpha 2 (Shape 2) > 0.
Beta (Scale) > 0.

The PERT distribution is widely used in project and program management to define the worst-
case, nominal-case, and best-case scenatios of project completion time. It is related to the Beta
and Triangular distributions. PERT distribution can be used to identify risks in project and cost
models based on the likelihood of meeting targets and goals across any number of project
components using minimum, most likely, and maximum values, but it is designed to generate a
distribution that more closely resembles realistic probability distributions. The PERT
distribution can provide a close fit to the normal or lognormal distributions. Like the triangular
distribution, the PERT distribution emphasizes the "most likely" value over the minimum and
maximum estimates. However, unlike the triangular distribution, the PERT distribution
constructs a smooth curve that places progressively more emphasis on values around (near) the
most likely value, in favor of values around the edges. In practice, this means that we "trust” the
estimate for the most likely value, and we believe that even if it is not exactly accurate (as
estimates seldom are), we have an expectation that the resulting value will be close to that
estimate. Assuming that many real-wotld phenomena are normally distributed, the appeal of the
PERT distribution is that it produces a curve similar to the normal curve in shape, without
knowing the precise parameters of the related normal curve. Minimum, Most Likely, and
Maximum are the distributional parameters.

The mathematical constructs for the PERT distribution are shown below:

_ (x=min)"*(max—x)***

f(x)=
) B(AL A2)(max— min)"*A#*
min+ 4(likely) + max _ min . min+ 4(likely) + max
where Al=6 6 - and A2=6 6
max— min max— min

and B is the Beta function
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_ Min+4Mode + Max

Mean
6

Standard Deviation = \/(ﬂ - M'n)7(MaX )

Skew:\/ _ 7 [Min+Max—2y)
(u—Min)(Max — u) 4

Input requirements:

Minimum < Most Likely < Maximum and can be positive, negative, or zeto.

The Power distribution is related to the exponential distribution in that the probability of small
outcomes is large but exponentially decreases as the outcome value increases. Alpha (also
known as shape) is the only distributional parameter.

The mathematical constructs for the Power distribution are shown below:

f(x)=ax“*

F(x)=x"

Mean -
l+a

Standard Deviation = +
l+a) (2+a)
Skew = a_—’_?'(wj
V o a+3

Excess Kurtosis is a complex: function and cannot be readily computed
Input requirements:

Alpha > 0.

The Power 3 distribution uses the same constructs as the original Power distribution but adds a
Location, or Shift, parameter, and a multiplicative Factor parameter. The Power distribution
starts from a minimum value of 0, whereas this Power 3, or Shifted Multiplicative Power,
distribution shifts the starting location to any other value.

Alpha, Location or Shift, and Factor are the distributional parameters.
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Input requirements:
Alpha > 0.05.
Location, or Shift, can be any positive or negative value including zero.

Factor > 0.

The Student’s t distribution is the most widely used distribution in hypothesis test. This
distribution is used to estimate the mean of a normally distributed population when the sample
size is small to test the statistical significance of the difference between two sample means or
confidence intervals for small sample sizes.

The mathematical constructs for the t distribution ate as follows:

CT[(r+1)/2]
~Jrzr[r/2]

Mean = 0 (this applies to all degrees of freedom 7 except if the distribution is shifted to another
nonzero central location)

£t) (Lt [r)

Standard Deviation = _r

r-2
Stkewness = 0 (this applies to all degrees of freedom: 1)

Exvess Kurtosis = % forallr >4
r —

X —_
where t =
S

and /s the gamma function.

Degrees of freedom ris the only distributional parameter.

The t distribution is related to the F distribution as follows: the square of a value of 7 with »
degrees of freedom is distributed as F with 1 and rdegrees of freedom. The overall shape of the
probability density function of the t distribution also tesembles the bell shape of a normally
distributed variable with mean 0 and variance 1, except that it is a bit lower and wider or is
leptokurtic (fat tails at the ends and peaked center). As the number of degrees of freedom
grows (say, above 30), the t distribution approaches the normal distribution with mean 0 and
variance 1.

Input requirements:

Degrees of freedom = 1 and must be an integer.

The triangular distribution describes a situation where you know the minimum, maximum, and
most likely values to occur. For example, you could describe the number of cars sold per week
when past sales show the minimum, maximum, and usual number of cars sold.
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Conditions

The three conditions underlying the triangular distribution are:
e  The minimum number of items is fixed.
e  The maximum number of items is fixed.

e The most likely number of items falls between the minimum and maximum values,
forming a triangular-shaped distribution, which shows that values near the minimum
and maximum are less likely to occur than those near the most-likely value.

The mathematical constructs for the triangular distribution are as follows:

2(x - Min)

(Max — Min)(Likely — min)
2(Max — x)

(Max — Min)(Max — Likely)

for Min < x < Likely
f(x)=

for Likely < x < Max

Mean = %(Min + Likely + Max)

Standard Deviation = \/118(Min2 + Likely? + Max? — Min Max — Min Likely — Max Likely)

Skewness = V2(Min + Max — 2Likely)(2Min — Max — Likely)(Min — 2Max + Likely)
5(Min? + Max? + Likely? — MinMax — MinLikely — MaxLikely)®'?

Excess Kurtosis = —0.6 (this applies to all inputs of Min, Max;, and Likely)

Minimum value (Min), most-likely value (Likeh), and maximum value (Max) are the
distributional parameters.

Input requirements:
Min < Most Likely < Max and can take any value.

However, Min < Max and can take any value.

With the uniform distribution, all values fall between the minimum and maximum and occur
with equal likelihood.

Conditions

The three conditions underlying the uniform distribution are:
e  The minimum value is fixed.
e The maximum value is fixed.

e All values between the minimum and maximum occur with equal likelihood.

"The mathematical constructs for the uniform distribution are as follows:

f(x) =; for all valuessuch that Min < Max
Max — Min
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Mean — Min + Max

(Max — Min)?
12

Standard Deviation =

Stkewness = 0 (this applies to all inputs of Miz and Max)

Excess Kurtosis = —1.2 (this applies to all inputs of Min and Max)

Maximum value (Max) and minimum value (Mi) are the distributional parameters.
Input requirements:

Min < Max and can take any value.

The Weibull distribution describes data resulting from life and fatigue tests. It is commonly
used to describe failure time in reliability studies as well as the breaking strengths of materials in
reliability and quality control tests. Weibull distributions are also used to represent various
physical quantities, such as wind speed.

The Weibull distribution is a family of distributions that can assume the properties of several
other distributions. For example, depending on the shape parameter you define, the Weibull
distribution can be used to model the exponential and Rayleigh distributions, among others.
The Weibull distribution is very flexible. When the Weibull shape parameter is equal to 1.0, the
Weibull distribution is identical to the exponential distribution. The Weibull location parameter
lets you set up an exponential distribution to start at a location other than 0.0. When the shape
parameter is less than 1.0, the Weibull distribution becomes a steeply declining curve. A
manufacturer might find this effect useful in describing part failures during a burn-in period.

The mathematical constructs for the Weibull distribution ate as follows:
a-1 X “
f(x) = “[X} e )
BLA
Mean = ST (1+a™)
Standard Deviation = 3 [F(1+ 207 -T*(1+ a’l)]

Skemmess= 20 A+ 1) =30+ FTA+287)+T(A+347)
[ra+2pt) -2+ "

Excess Kurtosis =
—6I* (+ ) +12I° 1+ LA+ 287) -3 A+ 28 - 4T+ fOTA+ 387+ T+ 457
[ra+2p%-r?a+pHf

Shape (@) and central location scale (f) are the distributional parameters, and /is the Gamma
function.

Input requirements:
Shape Alpha = 0.05.

Scale Beta > 0 and can be any positive value.
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The Weibull 3 distribution uses the same constructs as the original Weibull distribution but
adds a Location, or Shift, parameter. The Weibull distribution starts from a minimum value of
0, whereas this Weibull 3, or Shifted Weibull, distribution shifts the starting location to any
other value.

Alpha, Beta, and Location or Shift are the distributional parameters.
Input requirements:

Alpha (Shape) = 0.05.

Beta (Central Location Scale) > 0 and can be any positive value.

Location can be any positive or negative value including zero.
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3. MIPOrHO3UPOBAHME

orecasting is the act of predicting the future. It can be based on historical data or

speculation about the future when no history exists. When historical data exist, a

quantitative or statistical approach is best, but if no historical data exist, then potentially
a qualitative or judgmental approach is usually the only recourse. Figure 3.1 lists the most
common methodologies for forecasting,

FORECASTING

Expert Opinions

Management Assumptions
QUALITATIVE Market Research
Polling Data

MIXED PANEL

CROSS-SECTIONAL

Use Risk Simulator
to run Monte Carlo
Simulations (use
distributional fitting
or nonparametric
custom distributions)

Monte Carlo Simulation
Multiple Regression

p
(8 Time-Series Models)
Multivariate Regression

Nonlinea apolation

Figure 3.1 — Forecasting Methods
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3.1 Pazamarpre THITBI METOAOB IIPOTHO3HPOBAHHA

Generally, forecasting can be divided into quantitative and qualitative approaches. Qualitative
forecasting is used when little to no reliable historical, contemporaneous, or comparable data
are available. Several qualitative methods exist such as the Delphi, or expert opinion, approach
(a consensus-building forecast by field experts, marketing experts, or internal staff members),
management assumptions (target growth rates set by senior management), and market research
or external data or polling and surveys (data obtained from third-party sources, industry and
sector indexes, or active market research). These estimates can be either single-point estimates
(an average consensus) or a set of forecast values (a distribution of forecasts). The latter can be
entered into Risk Simulator as a custom distribution and the resulting forecasts can be
simulated, that is, a nonparametric simulation using the estimated data points themselves as the
distribution.

On the quantitative side of forecasting, the available data or data that need to be forecasted can
be divided into time-series (values that have a time element to them, such as revenues at
different years, inflation rates, interest rates, market share, failure rates), cross-sectional (values
that are time-independent, such as the grade point average of sophomore students across the
nation in a particular year, given each student’s levels of SAT scotes, 1Q, and number of
alcoholic beverages consumed per week), or mixed panel (mixture between time-series and
panel data, e.g., predicting sales over the next 10 years given budgeted marketing expenses and
market share projections, which means that the sales data is time series but exogenous vatiables,
such as marketing expenses and market share, exist to help to model the forecast predictions).

The Risk Simulator software provides the user several forecasting methodologies:

ARIMA (Autoregressive Integrated Moving Average)
Auto ARIMA
Auto Econometrics
Basic Econometrics
Combinatorial Fuzzy Logic
Cubic Spline Curves
Custom Distributions
GARCH (Generalized Autoregressive Conditional Heteroskedasticity)
J Curve
. Matkov Chain
. Maximum Likelihood (Logit, Probit, Tobit)
. Multivariate Regression
. Neural Network Forecasts
. Nonlinear Extrapolation

D A AR R e A

—_ e e e e e
S O N =)

. S Curve

—_
(=)

. Stochastic Processes

[EN
]

. Time-Series Analysis and Decomposition
. Trendlines

—_
o

The analytical details of each forecasting method fall outside the purview of this user manual.
For more details, please review Modeling Risk: Appling Monte Carlo Simmulation, Real Options
Analysis, Stochastic Forecasting, and Portfolio Optimization, Second Edition, by Dr. Johnathan Mun
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(Wiley Finance, 2010), who is also the creator of the Risk Simulator software. Nonetheless, the
following illustrates some of the more common approaches and several quick getting started
examples in using the software. More detailed descriptions and example models of each of
these techniques are found throughout this chapter and the next. All other forecasting
approaches are fairly easy to apply within Risk Simulator.

Autoregressive integrated moving average (ARIMA, also known as Box-Jenkins ARIMA) is an
advanced econometric modeling technique. ARIMA looks at historical time-series data and
performs backfitting optimization routines to account for historical autocorrelation (the
relationship of one value versus another in time) and the stability of the data to correct for the
nonstationary characteristics of the data, and this predictive model learns over time by
correcting its forecasting errors. Advanced knowledge in econometrics is typically required to
build good predictive models using this approach.

The Auto ARIMA module automates some of the traditional ARIMA modeling by
automatically testing multiple permutations of model specifications and returns the best-fitting
model. Running the Auto ARIMA is similar to regular ARIMA forecasts. The difference being
that the P, D, Q inputs are no longer required and different combinations of these inputs are
automatically run and compared.

Econometrics refers to a branch of business analytics, modeling, and forecasting techniques for
modeling the behavior of or forecasting certain business, economic, finance, physics,
manufacturing, operations, and any other variables. Running the Basic Econometrics models
are similar to regular regression analysis except that the dependent and independent variables
are allowed to be modified before a regression is run.

Similar to basic econometrics, but Auto Econometrics allows thousands of linear, nonlinear,
interacting, lagged, and mixed variables to be automatically run on your data to determine the
best-fitting econometric model that describes the behavior of the dependent variable. It is
useful for modeling the effects of the variables and for forecasting future outcomes, while not
requiring the analyst to be an expert econometrician.

In contrast, the term fuzzy logic is derived from fuzzy set theory to deal with reasoning that is
approximate rather than accurate—as opposed to crisp logic, where binaty sets have binary
logic, fuzzy logic variables may have a truth value that ranges between 0 and 1 and is not
constrained to the two truth values of classic propositional logic. This fuzzy weighting schema
is used together with a combinatorial method to yield time-series forecast results.

Sometimes there are missing values in a time-series data set. For instance, interest rates for years
1 to 3 may exist, followed by years 5 to 8, and then year 10. Spline curves can be used to
interpolate the missing years’ interest rate values based on the data that exist. Spline curves can
also be used to forecast or extrapolate values of future time periods beyond the time period of
available data. The data can be linear or nonlinear.

Using Risk Simulator, expert opinions can be collected and a customized distribution can be
generated. This forecasting technique comes in handy when the data set is small or the
goodness of fit is bad when applied to a distributional fitting routine.

The generalized autoregressive conditional heteroskedasticity (GARCH) model is used to
model historical and forecast future volatility levels of a marketable security (e.g., stock prices,
commodity prices, and oil prices). The data set has to be a time series of raw price levels.
GARCH will first convert the prices into relative returns and then run an internal optimization
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to fit the historical data to a mean-reverting volatility term structure, while assuming that the
volatility is heteroskedastic in nature (changes over time according to some economettic
characteristics). Several variations of this methodology are available in Risk Simulator, including
EGARCH, EGARCH-T, GARCH-M, GJR-GARCH, GJR-GARCH-T, IGARCH, and T-
GARCH.

The | curve, or exponential growth curve, is where the growth of the next petiod depends on
the current period’s level and the increase is exponential. This means that over time, the values
will increase significantly from one period to another. This model is typically used in forecasting
biological growth and chemical reactions over time.

A Markov chain exists when the probability of a future state depends on a previous state and
when linked together form a chain that reverts to a long-run steady state level. This approach is
typically used to forecast the market share of two competitors. The required inputs are the
starting probability of a customer in the first store (the first state) will return to the same store in
the next period versus the probability of switching to a competitor’s store in the next state.

Maximum likelihood estimation (MLE) is used to forecast the probability of something
occurring given some independent variables. For instance, MLE is used to predict if a credit
line or debt will default given the obligor’s characteristics (30 years old, single, salary of $100,000
per year, and having a total credit card debt of $10,000); or the probability a patient will have
lung cancer if the person is a male between the ages of 50 and 60, smokes 5 packs of cigarettes
per month, and so forth. In these circumstances, the dependent variable is limited (i.e., limited
to being binary 1 and 0 for default/die and no default/live, or limited to integer values like 1, 2,
3,etc.), and the desired outcome of the model is to predict the probability of an event occurring.
Traditional regression analysis will not work in these situations (the predicted probability is
usually less than zero or greater than one, and many of the required regression assumptions are
violated, such as independence and normality of the errors, and the errors will be faitly large).

Multivariate regression is used to model the relationship structure and charactetistics of a
certain dependent variable as it depends on other independent exogenous vatiables. Using the
modeled relationship, we can forecast the future values of the dependent variable. The accuracy
and goodness of fit for this model can also be determined. Linear and nonlinear models can be
fitted in the multiple regression analysis.

The term Neural Network is often used to refer to a network or circuit of biological neurons,
while modern usage of the term often refers to artificial neural networks comprising artificial
neurons, or nodes, recreated in a software environment. Such networks attempt to mimic the
neurons in the human brain in ways of thinking and identifying patterns and, in our situation,
identifying patterns for the purposes of forecasting time-series data.

The underlying structure of the data to be forecasted is assumed to be nonlinear over time. For
instance, a data set such as 1, 4, 9, 16, 25 is considered to be nonlinear (these data points are
from a squared function).

The S curve or logistic growth curve starts off like a | curve, with exponential growth rates.
Over time, the envitonment becomes saturated (e.g., market saturation, competition,
overcrowding), the growth slows, and the forecast value eventually ends up at a saturation or
maximum level. This model is typically used in forecasting market share or sales growth of a
new product from market introduction until maturity and decline, population dynamics, and
other naturally occurring phenomenon.
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Sometimes variables cannot be readily predicted using traditional means, and these variables are
said to be stochastic. Nonetheless, most financial, economic, and naturally occurring
phenomena (e.g., motion of molecules through the air) follow a known mathematical law or
relationship. Although the resulting values are uncertain, the underlying mathematical structure
is known and can be simulated using Monte Carlo risk simulation. The processes supported in
Risk Simulator include Brownian motion random walk, mean-reversion, jump-diffusion, and
mixed processes, useful for forecasting nonstationary time-series variables.

In well-behaved time-series data (typical examples include sales revenues and cost structures of
large corporations), the values tend to have up to three elements: a base value, trend, and
seasonality. Time-seties analysis uses these historical data and decomposes them into these
three elements, and recomposes them into future forecasts. In other words, this forecasting
method, like some of the others described, first performs a back-fitting (backcast) of historical
data before it provides estimates of future values (forecasts).

Trendlines can be used to determine if a set of time-series data follows any appreciable trend.
Trends can be linear or nonlinear (such as exponential, logarithmic, moving average, powet,
polynomial, or power).

3.2 3anyck HHCTpyMEHTA IIPOTrHO3HPOBAHHA
prckoB B Risk Simulator

In general, to create forecasts, several quick steps are required:
e  Start Excel and enter in or open your existing historical data.
e Select the data, and click on Sizulation and select Forecasting.

e Select the relevant sectons (ARIMA, Multivariate Regression, Nonlinear
Extrapolation, Stochastic Forecasting, Time-Series Analysis) and enter the relevant
inputs.

Figure 3.2 illustrates the Forecasting tool and the various methodologies and the following
provides a quick review of the selected methodology and several quick getting started examples
in using the software. The example file can be found either on the start menu at Star7 | Rea/
Options 1V aluation | Risk Sinmlator | Examples or accessed directly through Riské Sinmlator |
Excanmple Models.
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ARIMA
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£  GARCH
T J-5-06pazHele KpWELIE
. Uenu Mapkoea
i MLE LIMDEP
AHANWI MHOXECTESHHOM perpeccim
HelpoHHana ceTe
HenauHeiHan 3kcTpanonaymua
CToxacTHeckme NpoLectsl
AHANW3 BPeMEHHLIX PALOE

NvHKua TpeHaa

Figure 3.2 — Risk Simulator’s Forecasting Methods

3.3 Araan3 BpeMEHHBIX PAAOB

Figure 3.3 lists the eight most common time-series models, segregated by seasonality and trend.
For instance, if the data variable has no trend or seasonality, then a single moving-average
model or a single exponential-smoothing model would suffice. However, if seasonality exists
but no discernible trend is present, either a seasonal additive or seasonal multiplicative model
would be better, and so forth.

No Seasonality With Seasonality
2 Single Moving Average Seasonal
g °N9 g Averag Additive
=
zo Single Exponential Seasonal
Smoothing Multiplicative
Double Moving Holt-Winter's
2 Average Additive
e
=
£ Double Exponential Holt-Winter's
= Smoothing Multiplicative

Figure 3.3 — The Eight Most Common Time-Series Methods
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e Start Excel and open your historical data if required (the example below uses the
Time-Series Forecasting file in the examples folder).

o Select the bistorical data (data should be listed in a single column).
o Sclect Risk Simulator | Forecasting | Tinre-Series Analysis.

e Choose the model to apply, enter the relevant assumptions (Figure 3.4), and click OK

Figure 3.5 illustrates the sample results generated by using the Forecasting tool and a Holt-
Winter’s multiplicative model. The model-fitting and forecast chart indicates that the trend and
seasonality are picked up nicely by the Holt-Winter’s multiplicative model. The time-seties
analysis teport provides the relevant optimized alpha, beta, and gamma parameters; the etror
measurements; fitted data; forecast values; and fitted-forecast graph. The parameters are simply
for reference. Alpha captures the memory effect of the base level changes over time, and beta is
the trend parameter that measures the strength of the trend, while gamma measures the
seasonality strength of the historical data. The analysis decomposes the historical data into these
three elements and then recomposes them to forecast the future. The fitted data illustrates the
historical data, and it uses the recomposed model and shows how close the forecasts are in the
past (a technique called backeasting). The forecast values are ecither single-point estimates or
assumptions (if the option to automatically generate assumptions is chosen and if a simulation
profile exists). The graph illustrates these historical, fitted, and forecast values. The chart is a
powerful communication and visual tool to see how good the forecast model is.

5Okl OT NPOAAK 32 NPOLWbIE NepU E MporHo3MpoEaHE BPEMEHHBIX PRACE
AHENU3 BPEMEHHLIX PAGOE WCMICNE3YETCA ANA NPOTHOS MPOBAHUA
NEPEMEHHEIX EPEMEHHEIX DALCE MyTEM b MCTOP! KHIC

Tod Keapman [epuod  [Mpodaxu LEHKbIX 13 6 U EERL i )

GG? f f 5584 20 HDC“B.CIY'OUJ.Eﬁ PENNHUEZUMK 3THX 3NEMEHTOE B GYHYLU.“X NPorHo3ax.
2 - PH BBINONHEHWW TEKOMo aHaNKUS3 WCXOOQAT W3 TOro, 4YTO TPEHA M
2007 2 2 §584.10 CE30HHOCTE COXPEHATCA.
2007 3 3 E765.40 i -
2007 4 4 £892.30 F
2008 1 3 £885.40 A
2008 2 [} S677.00 5
2008 32 7 £1,006.60
2008 4 8 81122 10 ABTOMETUHECKMIT BRIGOp OaroKpaTHoe CKonb3ALes OarokpatHoe -
2009 f 9 51’ 153 40 MOoaEnn cpegHee SIKCNOHEHUMANEH... -
2009 2 10 599320 Elll ] | C
2008 3 11 $1,312.50 NapameTpsl Mopenk
2005 4 12 £1,545.30 O nTuMuzMpoBaTE
zg:g ; :i ::g:g ig Anbtpa 05 [ Cesonkocts (nepwonos/umknos) |KeapTanos (4) -
2010 3 15 §1,735.20 Beta 05 M UKECNo NpOrHeS HelX NEPHOGOE 4
2010 4 16 $2029.70 fawa [ 05
2011 1 17 52,107.80 i MakcuMankHoe Bpema
2011 2 18 §1,650.30 Mezmnss 4 I Beinonkesi (cex.) 300
2011 3 19 £2,304.40
2011 4 20 §2 639.40 ¥ ABTOMETWIECKOE COSOEHWE DONYILEHI

[~ OonyckaTs nonApHEIE N3paMETPeI

0K | OTmeta

Figure 3.4 — Time-Series Analysis
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This time-series analysis module contains the eight time-series models seen in Figure 3.3. You
can choose the specific model to run based on the trend and seasonality criteria or choose the
Auto Model Selection, which will automatically iterate through all eight methods, optimize the
parameters, and find the best-fitting model for your data. Alternatively, if you choose one of the
eight models, you can also unselect the gptimize checkboxes and enter your own alpha, beta, and
gamma parameters. Refer to Dr. Johnathan Mun’s Modeling Risk: Applying Monte Carlo Simulation,
Real Options Analysis, Forecasting, and Optinuization, Second Edition (Wiley Finance, 2010) for more
details on the technical specifications of these parameters. In addition, you would need to enter
the relevant seasonality periods if you choose the automatic model selection or any of the
seasonal models. The seasonality input has to be a positive integer (e.g., if the data is quartetly,
enter 4 as the number of seasons or cycles a year, or enter 12 if monthly data). Next, enter the
number of periods to forecast. This value also has to be a positive integer. The maximum
runtime is set at 300 seconds. Typically, no changes are required. However, when forecasting
with a significant amount of historical data, the analysis might take slightly longer, and if the
processing time exceeds this runtime, the process will be terminated. You can also elect to have
the forecast automatically generate assumptions. That is, instead of single-point estimates, the
forecasts will be assumptions. Finally, the polar parameters option allows you to optimize the
alpha, beta, and gamma parameters to include zero and one. Certain forecasting software allows
these polar parameters while others do not. Risk Simulator allows you to choose which to use.
Typically, there is no need to use polar parameters.
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MyneTUNAKMKaTMEHAA Mogenk XonkTa-YUHTepa

CTaTHCTHYeCKan Cnpaeka

Ancda, SeTe, ramms RMSE Anedre, GeTa, ramms RMSE
0.00,0.00,0.00 I14.524 0.00,0.00,0.00 914524
0.10,0.10,0.10 415,322 0.10,0.10, 010 415.322
0.20,0.20,0.20 187.202 0.20,0.20,0.20 157.202
0.20,0.20,0.20 115.795 0.20,0.20,0.20 115.795
0.40,0.40,0.40 101,734 0.40, 0.40, 0.40 101,734
0.50,0.50,0.50 102,143

AHaNW2 BELINCNHANCA NPY 23HA4YEeHWW aneda paeHou 0.2429, Gera paeqou 1.0000, rauua paeHou 0.7797 » 2HaYEHHH CEZOHHOCTH paBHOoM 4

Cnpaeka N0 aHANN3y BPeMEHHbIX PAOOE

Koraa HEMNWGECTEYET KSK CEICHHOCTE, TSK W TpeHd, TpefyioTcA GONEe CNoMHWE MOQENW CAINOHEHWA QSHHLX HE COCTSEHWE SMEMEHTH! yposeHe Gazosoro sapuanta (L), sssewerHwil va
o I pa ansds, T TPEHAS, i Ha o P pa GeT 1 T cesonnocTk [S), 1 HaE o p pa ramms. CywecTeyet
MW REMAKITCA METOL SAAWTWEHON CESOHHOCTH XOMETS-YMHTEPS M METOA MYNETHINWKSTWEHOW CESOHHOCTM XoneTa-YuxTeps. B

HECKOMEKD METOAOE, HO pacnpocT
SAANTHEHCH MOAENK XoNETE-YUHTERa yposeHE: §83080TC ESPUAHTS, CEICHHOCTE M TDEH CKNBALESIOTCA EMECTE AR NOMYUEHUA NPOTHOE.
KESAPSTHOTD KOPHR W2 Cf THsHol cwwSkn (RMSE). KeagpaTHuid

HawSonee NogxogmuMM METOACHM AMA NPOBEPKK NPOTHOIE CHOMEIALEMD CPEQHENT RENAETCA MCH
HOPEHE WZ CpeaHexkssdpaTwuHoW owwbkn (RMSE) nosscneeT S&iCuWTETE KESAPSTHH KOPEHE CPEOHMX KESADSTUMHSN OTKNOHEHWA ANA COMMSCOEEHHLN IHEYEHWA & NPOTHECEEC
AEACTEUTENEHEM TOUKSM A8HHLD

CpeanexsagpaTunan ownbka (MSE) - 3o aScomoTHan mepa owwbkK, NPW NOMOWH KOTOPCH MOXHC BEMUCNWTE KESAPST ECEX CWWSOK [PESHULY MEXIY ASHCTEMTENEHLIMW HCTORHSECKMMA
MW ANA NPOTHOSS OSHHLIMM, M ). uToGu NPEACTERETHTE EISMMOMCKTICUEHWE MONOXMTENLHLX W OTPHMUETENEHEX cwubok. 3Ta

SHEUEHWAMW OSHHEX W P
MELS MMEET T p MESTE PEIMER KEY) owwGoK 38 CUYET NPpMABHMA WM GOMLWErD BECE NPM ELMMCMIEHMM KEBAPATE B C o ueb . 3Ty

NOTPEWHOCTE MOXHT WCTIPEEHTE MYyTEM C pasHEx i ep pRoce. HESApSTHEIl KOPEHE WE CPEOHEKESAPSTHHMHONA owilkn (TRKke WIBECTHEI KK KESAPSTHSECKSR

A mepol ocwnSok. KesapaTeuil KOPEHE Wi CPEAHEKERARSTHSHON CWHEKM WOXHC CNPEAENMTE KaK CpeaHes a5CoMmOTHEX
py nporscsHoi ocwwSkw. RMSE

DYHKUMA NOTEpE) RENASTCA YnAp
sHaueHWd owwboK NporHosa. 3TOT METOO WHPOKS MPUMEHWM B TEX CNY4SAX, KOT43 uexa owwlok & nporsose afconoTHoMY P
NEUMEHRETCA KAK KpUTERUA ewdopa npu nogSope HEWEONEs NOAXOARLME ABHHEN ANA MOAENN EDEMEHHLN DRICE.

Cpenwan afconwoTHas owwdka & npousHTax (MAFE) - 370 OTHOCWTENEHSRA CTETHCTHEE OWWECK, EHDEXEHHER KEK CPEAHWA NPOUSHT CWWEoK & TOUKSX WCTOPWLECKUX ASHHEX W Hanonee uacTo
A mepol

NPUMEHUMS B TEX CNYUSAX, KOTAS UeHS cwkiok & NporHose GoNEs TECHD CERIGHE C NPOUSHTHEN COOTHOWEHKWEM CWWS0K, HEXENKW C WX YWCNOELM B . B wrore, ©
menReTcR U-ctatwocTuka TefinA, KOTOpSR NOEONAET OMNPEedEenWTe CTENEHE HEWEHOCTW NporHosa AnA wmoaenw. Ecnw U-ctatucTuks TelinA wedee 1,0, To WCNonesossHHsM MeTod
NEOrHOSMPOESHUA ODECMEUMESET NPOrHOS, KOTOPI CTETHCTHUECKN TOUHEE, YN NEEANCIOHEHNE.

Mepuon Tewywee BopssHUESHWE NPOrHOLE OwnBKs & MIMEpEHURY ([ Tekyulee B CPABHEHWH C NPOTHO3IOM

1 B84.20 RMSE T1E132 35000 T

2 5810 MSE 51971348 "

3 TES.d0 MAD 534071

4 89230 MAPE 4.50: IOy ¥

5 G85.40 68420 U-crsmecTexs Teiing 0.3054 ]

B G77.00 BET.55 2500.0 1 \

7 1006.60 93545

g 1zz10 1135.09 -

9 16340 12,45 200001 3
10 93320 §87.95

T 13z50 134838 1500.0 4
12 1545.30 1546.53
13 1596.20 157244 =
14 1260.40 1293.20 10000 e
5 1735.20 170477 _\/_'\
16 2023.70 1976.23 5000 + ; £ i
17 2107.60 2026.01 0 10 15 20 25
15 1650.30 1637258 -

Figure 3.5 — Example Holt-Winter’s Forecast Report
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3.4 MuoromepHsre perpeccrmn

It is assumed that the user is sufficiently knowledgeable about the fundamentals of regression
analysis. The general bivariate linear regression equation takes the form of Y = g, + B X +¢,

where f is the intercept, A is the slope, and ¢is the etror term. It is bivariate as there are only
two vatiables: a Y, or dependent, variable and an X, or independent, variable, where X is also
known as the regressor (sometimes a bivariate regression is also known as a univariate
regression as there is only a single independent variable X). The dependent variable is so named
because it depends on the independent variable; for example, sales revenue depends on the
amount of marketing costs expended on a product’s advertising and promotion, making the
dependent variable sales and the independent variable marketing costs. An example of a
bivatiate regression is seen as simply inserting the best-fitting line through a set of data points in
a two-dimensional plane as seen on the left panel in Figure 3.6. In other cases, a multivariate
regression can be performed, where there are multiple, or #» number of, independent X
variables, where the general regression equation will now take the form of
Y =B, + B X, + Lo X, + e X4 B, X, + & . In this case, the best-fitting line will be within an
7 + 1 dimensional plane.

Figure 3.6 — Bivariate Regression

However, fitting a line through a set of data points in a scatter plot as in Figure 3.6 may result in
numerous possible lines. The best-fitting line is defined as the single unique line that minimizes
the total vertical errors, that is, the sum of the absolute distances between the actual data points

(Y) and the estimated line (Y ) as shown on the right panel of Figure 3.6. To find the best-
fitting line that minimizes the errors, a more sophisticated approach is required, that is,
regression analysis. Regression analysis, therefore, finds the unique best-fitting line by requiting
that the total errors be minimized, or by calculating

Min3 (Y, -,)’
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where only one unique line minimizes this sum of squared etrors. The errors (vertical distance
between the actual data and the predicted line) are squared to avoid the negative errors
canceling out the positive errors. Solving this minimization problem with respect to the slope
and intercept requires calculating a first derivative and setting them equal to zero:

d & ; d s /
-2 (Y =Y)? =0 and—3 (¥, -Y;)* =0
dOZQ W%;

which yields the bivariate regression’s least squares equations:

n B B " ley
D% X9 Soxy -

— =l

g(xi -X) ) (ixi jz
;Xi _FT
A=Y -AX

For multivariate regression, the analogy is expanded to account for multiple independent
variables, where Y; = B + 8, X,; + B;X3; + &; and the estimated slopes can be calculated

by:

2 _ ZYiXZ,iZX:s‘Z,i _ZYiX3,iZX2,iX3,i
L XXX (XX )

[3 _ ZYixa,izxzz,i _ZYixZ,inz,ixs,i
CEXEEX (XXX S

In running multivariate regressions, great care has to be taken to set up and interpret the results.
For instance, a good understanding of econometric modeling is required (e.g., identifying
regression pitfalls such as structural breaks, multicollinearity, heteroskedasticity, autocorrelation,
specification tests, nonlinearities, etc.) before a proper model can be constructed. See Modeling
Risk: Appling Monte Carlo Simmnlation, Real Options Analysis, Forecasting, and Optimization, Second
Edition (Wiley Finance, 2010) by Dr. Johnathan Mun for more detailed analysis and discussion
of multivariate regression as well as how to identify these regression pitfalls.

e Start Excel and open your historical data if required (the illustration below uses the file
Multiple Regression in the examples folder).

e  Check to make sure that the data is arranged in columns, select the entire data area
including the variable name, and select Risk Sizulator | Forecasting | Multiple Regression.

e Sclect the dependent variable and check the relevant options (lags, stepwise regression,
nonlinear regression, etc.), and click OK.

Figure 3.8 illustrates a sample multivariate regression result report. The report comes complete
with all the regression results, analysis of variance results, fitted chart, and hypothesis test
results. The technical details of interpreting these results are beyond the scope of this user
manual. See Modeling Risk: Applying Monte Carlo Sinmlation, Real Options Analysis, Forecasting, and
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Optimization, Second Edition (Wiley Finance, 2010) by Dr. Johnathan Mun for more detailed
analysis and discussion of multivariate regression as well as the interpretation of regression
reports.

MHoecTBEHHaA perpeccuHs P \R{ea]] UD{JU“S
dalydatien
Y X1 X2 XJ X:L Xs mw.nmumvwmm.ear-
521 18308 185 4.041 79.6 72
a7 1148 600 0.55 1 8.5 1. Buibepute obnacte AaHHLX, BENKOYaR zaronoekk (B5:G55)
443 18068 372 3.665 323 57 2. Haxmure Risk Simulator | Mpor p I M perp
365 1729 142 2.351 451 7.3 3. Buibepute 3aBCUMYD NepeMeHHYHD (B LaHHOM npuMepe - nepemenHan Y) n Beibepute Ny Tpebyemyto
614 100484 432 29.76 190.8 75 PasHOBMAHOCTE (Perpeccopel 3ana3LiBaHiA, HENNHEHAA PerpecciA, NoLWAaroBan perpeccun),
385 16728 290 3.284 318 5 u HaxkmuTe OK. [poBepkTe aHanUTMYECKWe peayneTarsl B CO3AEHHOM OTUETE O Perpeccuu
286 14630 346 3.287 678.4 6.7
397 4008 328 0.666 3408 6.2
T64 38927 354 12.938 2396 73 "
427 | 22322 | 266 | 6478 | 1119 5 [l Awanus mHoxecTsenHoR perpeccm [E=RE >
153 371 320 1.108 1725 28
231 3136 197 1.007 122 6.1 Aﬂan;s MHOIeL'TBEH;Dﬂ PETPECCHI MOXET NPUMERATECA AR BhIHOHHEBHHR
524 5050 266 11'431 2056 7'1 ﬁ:;M’;ﬁlﬁh?:mHﬂ;HMEHﬂThCﬂ C PAROM SENSPXEK W HEMMHERHbO! ™
328 28886 173 5544 1546 59 , 8 TaKKe DIETECA PETPECCHM, HEUMHER C
240 16996 130 2777 45.7 486 ol .
286 13035 239 2478 303 44 3asuchman nepeventan |Y -
285 12973 190 3.685 92.8 T4 — — — — = =
569 | 16309 | 241 422 | 969 71 R ]t e [ [ s
96 5297 189 1.228 398 76 521 18308 185 4.041 79.6 72
498 | 19235 | 388 | 4781 | 4892 | 59 :z i;g:s :32 g::s ;M :g
481 44487 315 6.016 T67.6 9 : :
468 | 44213 | 303 9295 | 1636 9.2 1 e i 2t i 7
177 23619 298 4.375 55 51 614 100484 432 29.76 190.8 7.5
198 9106 134 | 2673 | 849 8.6 s s i S o =
458 24917 189 5117 743 6.6 286 14630 346 3.287 6784 6.7
108 3872 196 0.799 55 59 397 4008 328 0,666 3408 6.2
245 5945 183 1578 205 27 764 38927 354 12,838 239.6 7.3
5 > iz 477 77377 IRR RATR 3119 5 i
S | T | o | ds | w1 | 72 o
3 23624 349 713 1042 6.6 [ Perpeccopt: sanasawisanma A 3’. Mepwoaios) [7] Henmreinar perpeccin
606 5242 284 1515 125 69 -
512 92629 499 17.99 381 i) @ iMemn MOWaroE0i KOPPENALMKM 7] Nexasam sce wam
426 28795 231 6.629 136.1 58 o MeTog nowarosof Koppenawy
ar | asgr | te3 | oem | 93 | ad e et
265 48799 249 10.847 264.9 6.4 MeTon nowarosoi JBYCTOPOHHER perpec
370 14067 195 3146 458 6.7
312 12693 288 2842 296 6
222 62184 229 11.882 2651 6.9

Figure 3.7 — Running a Multivariate Regression
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OT4eT No pesyneTaTaM aHanusa perpeccuu

CTaTHCTHKE PerpeccHu

R-keaapat (koedhHUHEHT ASTERMUHILHK) 03272
CHOppeXTHpCEaHHsll R-keadpaT 0.2505
MuoxecTeenHsi B (KosdduunesT muoxecTeeH 05720
CTeHASpTHEA cwkiks & ouerkax (SEy) 1436720
Yucno HafnogeHni a0

HosddmymrenT geTepmuHaynn [R-keaopaT) oboexasaeT, yTo 0.33 48CTE ESPMATHEHOCTH B 33EMCHIMDH NEDEMEHHCH MOMeT SuTe ODTLACHEHE M EEMWCNEHS
NpW MOMOWW HESSEWCHMEN NEPEMEHHSN NPHW NPOEELSHWA BHENWIE perpeccul. OOHEKD, B CNYUSE MHOMECTEEHHONH DETPECCHMM CHOPPEKTHROERHHLI
KOSDMLMEHT ASTEPMUHALMM NEMHAMEET B0 EHUMBHWE CYWECTE0SEHUE AONOMHWTENEHON HEZSEMCHIMCH NEPEMEHHON DErPECCOPOE W KOPPEKTURYET 3TO
IHIUEHIE KOSPHLMEHTS AETEDMHHELNN C LEMEW NOMyYeHUA SoNee TOUHOMD NPEACTSENEHHR OO ACHUTENEHOH CHNel perpeccul. Takuw oSpaom, ToneKD
0.25 uBCTE ESPMETHEHOCTH E SEEMCHMON NEPEMEHHOA MoMeT Sume 0OEACHEHSE NPW NOMOWNW PETDECCOPOE.

HosthULUHEHT MHOMECTESHHON KOPPEMALMM (MHOMECTESHH R WSMEQRET KOPPEMALMID Mexdy A=ACTESMTENEHOR saEWcUMol nepemeHHOl [Y) W
Npeancnarsemoil MMM COTMEcOEaHHOA [Y) HE OCHOESHUM YPSEHEHWA perpeccud. W TICHE RENRETCA KESADSTHEM KODHEM OT kostdbUUMEeHTS
aeTepmunauny (R-keaapaT).

CTeHospTHar ownSka & ocuexkex (SEy) cnucweseT pasfpoc TOUSK A8HHLN, DECMONOHEHHLN EHIUE WM HUHE NUHWM WNW NNOCKOCTH PEFDECCHM. 3TO
ZHIUEHWE UCMONESYETOA KAK SNEMEHT BEMUCIEHHA © LENEH NOMYYSHWA BNOCNEACTEWN A0ESPHTENEHOTD MHTEDSANE DUEHDH.

PesynuTarsl perpeccHi

Ompesok a1 He wa 4 st
KosdduynesTs 57.9555 -0.0035 0.4644 252377 -0.00586 16.5573
CTaHASpTHER cwwika 108,730 0.0035 0.2535 vz 01016 4. 7336
t-CTatucTies 0.5327 -1.0066 1.86316 17877 -0.0543 11183
p-2HaueHHE 0.5383 03137 0.0738 0.0807 0.9332 0.2693
Hioxe 5% -161.2366 -0.0106 -0.0466 -3.2137 -0.2132 -13.2687
Beawe 25% 277.2076 0.0035 0.9753 236831 01381 45,3545
Crenexn ceodoasl MpoEepka runoTezsl
Crenexn cecboas 4ANA PETPECCHH S KpnTieeckss t-cTaTucThka (39% yeepernocTe & df oT 44) 26923
Crenenn ceofoqw ANA OCTETHS 4d KpuTiweeckan t-cTaTucTues (95% yeepennocTs & df ot 44) 20194
Boero cTeneqel ceofonw 43 KpuTiwseckan t-otaTwocTies (20% yeepennocTs & df ot 44) 1.6802

[ BHHEIE KOHPOULWEHTE NOSEOMAICT NOMYUHTE HBKNCOHHEE W OTPEIKM NPEANCNArasion PErPECCHN. HEMPUMED, KOMPPULUMEHTE RENAKTCA OUEHKOW UCTHHE,
COEQKYMHOCTE D MMEET IHEYEHHME E CNEAYHWEN YDEEHEHWM perpeccuu ¥ = b0 + B1X1 + b2ZX2 + | + bn¥n. CTasaspTHaA cwHika NOIECNRAST OUSHWTE
HECHKOMNEKD TOUHEIMW REMANTCA NPOTHOSHBE KOSMGMUWEHTH, 8 (-CTETMCTHES NPEACTSENAET COCTHOWEHWE NPOrHOSHSN KOSMOMUWEHTOE ¥ CTSHASPTHOM
B

T-CTETUCTHES WCMONEIyeTCR NPW NPOEEpHE TMNOTE:, KOMQE YCTSHSBENUESSTCR HYMEESA runoTesa (Ho) Takww oOpSIoM, uUTD PESNEHCE CLELHES
koaddiynenTa pasio 0, 8 aNeTepHETHERER runoTesa (Hae) Tarum obpssom, uTo koedduunesT He pased 0. MpUMeHAETCA t-KPHTERHA, W NOACHHTEHHER t-
CTETUCTHKE CREEHMESETCA C KPHTHUHEIMM SHEYEHWAMM HE COOTEETCTEYHWWY CcTeNeHmx ceodoqs ANA oCTaTka. t-KpHTepuil AENASTCA DUEHE ESMHEIM, TEH HEK
© Er0 NOMOWER ENCUWTHESETCH, AEMAETCA MM KAXANN s KO DULMEHTOE CTETHCTHYECKN SHEUHMEIM & NPUCYTCTERM Npoudx perpeccopos. NonywaeTca, uto
t-KPUTEPUI CTETUCTHUECKH NOATEEL®ASET, HEOSXOAHMD N OCTAEUTE PEMPECCOD UMW HEZSEUCHIAER NEDEIEHHER & YPEEHEHUH UMH &r0 [S8) HEAD OMYCTHTE.

HosbMUWEHT RENASTCA CTETUCTHMECKW SHEYWMENM, ESCNM  BUICYUWTEHHEA [-CTETUCTMKE ONA HEMD NPEESMUSET KEWTHUECKYHK -CTETUCTHKY HE
cooTeeToTEyER cTeneqn ceofoaw (df). TpewmA ooHOBHLIMK UCMONESYSMEIMN YROEHAMK YEEPEHHOCTH, KOTOPSIE NPUMEHRIITCRA NP NPOSEQKE SHAUMIMDCTH,
RENAKTCA 90%, 95% u 99%. Ecnu t-cTaTHCTHKS KO PULIMEHTE NPEELILSET KPHTHUECHKDE SHEUSHWE, OH CUMTSETCA CTATUCTHUECKH SHEUWMEM. MnW Xe npu
NOMOWH P-3HEYEHWA ERCUWTHIESTCA BCE EEPORTHOCTH BOSHHKHOEEHWA ANA t-CTATUCTHEN, YTO OSHEYEET, UTO YEM MEHEWE P-3HEYEHWE, TEM GOMEE SHEUMMEIM
AENAETCA kosdrpuywenT, OOLMHD SHEUMMLIMM YPOEHAMM ANA p-sHEuEHWA AEnAwTcA nokasatenw 0,01, 005 w 0,10, wTo COOTEETCTEYET YPOEHAM
yEEpEHHOCTH & 55%, B5% 1 B0%.

KostbuuMeHTe CO CEBOMMM D-SHEYEHMAMM, BLUIENEHHLIE CHHUM LUEETOM, NOKSSWESINT, YTC OHW REMNATCA CTATHCTHMECKH sHaunMaMK ¢ SD%-Hum yposHeM
VEEPEHHOCTH (2NbMa-yYPOEEHE), 8 BEIENEHHLIE KPECHEM D00SHEUSIOT, UTD OHW HE RENRIOTCA CTATUCTHEEDHN SHEUMMEIMN HW HE KBKOM SNbMa-YPOEHE.
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AHANKMI JUCNEPCHA
Cynanaes Cpeanee F- p-3umuenme
KESOPATOE KESAPATOE CTETMCTHES Mpoeepka runorezs!
Ferpeccua 47333543 55877.70 4 28 0.0023 Kpuriuecksn F-cTatucTiea (99% yeeperHocTe e df oT 5 1 3.4651
CreTaToK IE5ETSE Zzd01T KpuTuueeckan F-ctaTucTrrs (35% yeeperwtocTe e df oT S i 24270
Beero M4ES0E3. 65 KpuTiueckan F-ctatuoties (20% yeeperwnocTe s dfoT S i 15528

Tabnuuya axanmsa aucnepcuu [(ANOVA) nokasweaeT F-kpuTepwil ofWel CTATMCTMMECKDW SHEYMMOCTH MCLENM DETPECHH. B OTNMMWE OT pPACCMOTREHHMA
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Figure 3.8 — Multivariate Regression Results

3.5 Croxacraaeckoe rporHo3upoBaHue

A stochastic process is nothing but a mathematically defined equation that can create a seties of
outcomes over time, outcomes that are not deterministic in nature, that is, an equation or
process that does not follow any simple discernible rule such as price will increase X percent
every year or revenues will increase by this factor of X plus Y percent. A stochastic process is
by definition nondeterministic, and one can plug numbers into a stochastic process equation
and obtain different results every time. For instance, the path of a stock price is stochastic in
nature, and one cannot reliably predict the stock price path with any certainty. However, the
price evolution over time is enveloped in a process that generates these prices. The process is
fixed and predetermined, but the outcomes are not. Hence, by stochastic simulation, we create
multiple pathways of prices, obtain a statistical sampling of these simulations, and make
inferences on the potential pathways that the actual price may undertake given the nature and
parameters of the stochastic process used to generate the time series. Three basic stochastic
processes are included in Risk Simulator’s Forecasting tool, including geometric Brownian motion
or random walk, which is the most common and prevalently used process due to its simplicity
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and wide-ranging applications. The other two stochastic processes are the mean-reversion
process and the jump-diffusion process.

The interesting thing about stochastic process simulation is that historical data are not
necessarily required. That is, the model does not have to fit any sets of historical data. Simply
compute the expected returns and the volatility of the historical data or estimate them using
comparable external data or make assumptions about these values. See Modeling Risk: Applying
Monte Carlo Simmulation, Real Options Analysis, Forecasting and Optimization, Second Edition (Wiley
Finance, 2010) by Dr. Johnathan Mun for more details on how each of the inputs are
computed (e.g., mean-reversion rate, jump probabilities, volatility, etc.).

e Start the module by selecting Risk Sinzulator Stochastic Processes.

Forecasting

e Select the desired process, enter the required inputs, click on Update Chart a few times
to make sure the process is behaving the way you expect it to, and click OK (Figure
3.9).

Figure 3.10 shows the results of a sample stochastic process. The chart shows a sample set of
the iterations while the report explains the basics of stochastic processes. In addition, the
forecast values (mean and standard deviation) for each time period are provided. Using these
values, you can decide which time period is relevant to your analysis and set assumptions based
on these mean and standard deviation values using the normal distribution. These assumptions
can then be simulated in your own custom model.

-

E anI'HO3I.1 POB3HWE CTOXACTUYECKWX NPOUECCOE

CroxacTuueckne NpouecchHl - 3T0 NOCNEROEITENEHOCTH CcOBbITHE WM Tpon, KOTOPBIE COSO3NTCA NP YY3CcTHA
BEPOATHOCTHLE 3akoHoE. BpeMA oT BPEMEHN MOTYT NPOWCKOOMTE CTyYalikble COTEITHA, OOHAKD OHM NOOHUHAKTCA
©0COGEIM CTATHCTMYECKUM M BEPOATHOCTHEIM 3aKkoHaM. JHW NONE3HEI NPK NPOTHOZWPOEAHWM CMYYERHBEE ABNSHWA
(HaNPUMED, KOTWPOBOK 3KLMWIA, NPOLEHTHLIX CTABOK, LIEH HE 3NEKTPHYECTBO).
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Figure 3.9 — Stochastic Process Forecasting
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MpordosnpoBaHne cToXacTUYeCcKux NPpoueccee

CratncTHyecKan cnpaeka

CTOXSCTIWECKNE NPOYSC - 3T0 NOCNENOESTENEHOCTE COSEMIA WNN TPON, KOTODSIE COXLEKTCA NpH YSSCTHH ESPORTHOCTHED! 33HOMCE. A
MMEHHD, EPEMA OT EPEWEHM WOTYT NDOMCKODHTE CRyuSitmie CODSTMR, ONKSND OHM MODUMKAKTCA OCODEIM  CTSTHCTIMECERM M
BEPORTHOCTHEIM 33KOKEMW. K FMaEBssl CTOXSCTWUECKNM NDOYSCCEM OTHOCRTCR Chyuaiwos Omywossws npw SpOYHOBCHOM OEMMEHNN,
ECIEPST K CPEAHEMY W CE3uKCDDPaIHaA ARddyIHA. STH NPOYSCOS! MOMYT RCNONE30ESTECA ANR NPOTHOSKPOESHIA MEOMECTES NEPEUSHHLD,
KOTOPEIE, K3 NEPESI EXNRAL, CHELYHT CIyuaiHsi TREHIEW, KO TEW HE MEKSE NOUNKRIDTCR BEEPORTROCTHEIM J3KOHIM.

Mpousce cmyueaikore EMosnsseR NEK GROYHOECKOM DEVKEHWN MOKET WCMOMNEI0E3TECR ANR NPOTHOZHDOEEHKR CHEMEESN EYPCDE, UYSH K3
TOESQEl ¥ NPOMIX CTOXSCTHUECKNX LESHKEX EDEWEHKS DROCE, QMR KOTOPSD 3343kl Apefd WNW CKOPOCTE POCTE W EONSTHNEHOCTE N0
CTHOWEKKID K TRONE Opeita. MpOYScs ECIEQSTS & CRSOHEWY MOHET MENONEI0ESTECR ANA YMEHEWEHKR konefarvil B NpOYSCOE CMyuaisaro
BMyRAaHKE, NOZEONRR TPONE HKIUSNKESTECA K3 JOMVOCDOUKOS IKSUSHPE, UTO REMRETCA NONEIHEM NDK NPOTHOIMPOESKMN NEpSMEHKED
EPEMSHHE [RAOE, Y KOTOPLH WWSHTCR NOMMOGDOMHEIE CTSEEN, TIEKS ESK NPOUSHTHSR CTSELS WNK YPOBSHE WRANAEUMN (370 RONTOCPOMHEE
YENeEwe CTIECH, KOTOQSIS PEryNIDYHOTCR OPFEHaMK ENSCTH WK Pelboursiay wesasrewaw). Mpoysce crassoofpasvold Deddyzwm wacto
WCIOMESYETCA A NPOMHOSMPOESHIA NEKKLD EPEMEKHL [RIOE, KOTLE NEPEMEHHER WOKET NEPROIMECKN NEWOHCTDHPOBATE CTyuaime
CHIUKW, (3K, KINDRUED, B CMYUSS © USHEWM K3 #edTe MNK SNSTDOBHEDIND (DTISNEHSIS ESEESHHLIE ERSWHIMK NPIRUIESWY COBemiR woryT
NOESAUSTE WM GHIDKSTE LSk, B MTone, 5Tk TpH CTOXSCTHHECENX NPOYSCEE MOKKD CMEWKESTE W CONOCTAENATE N0 MEPE keobXonmwocTH.

FesyNeTaTsl, NOESISHNE CNP3ES, OTODPEXIIT CPRIHES ¥ CTIHLEPTHOR OTENOHEHIR ECSX WTEPSYMH, COZSEISWED K3 KI0M ESMEHROM
atane. Ecnw ssfpas myrst TowasaTe 502 wmepayee’, MyTe £3O0R WTEpauen GYOST NOES3EH K3 OTASMEHOR Searpawmws. [RaTpanmE,
NpHESLEHHIR HINHE, NOKIZRIESET NpRwep Kabopa myTel wepayed.
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Figure 3.10 — Stochastic Forecast Result
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Extrapolation involves making statistical projections by using historical trends that are projected
for a specified period of time into the future. It is only used for time-series forecasts. For cross-
sectional or mixed panel data (time-series with cross-sectional data), multivariate regression is
more appropriate. Extrapolation is useful when major changes are not expected, that is, causal
factors are expected to remain constant or when the causal factors of a situation are not clearly
understood. It also helps discourage introduction of personal biases into the process.
Extrapolation is faitly reliable, relatively simple, and inexpensive. However, extrapolation, which
assumes that recent and historical trends will continue, produces large forecast errors if
discontinuities occur within the projected time petiod. That is, pure extrapolation of time seties
assumes that all we need to know is contained in the historical values of the series that is being
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forecasted. If we assume that past behavior is a good predictor of future behavior, extrapolation
is appealing. This makes it a useful approach when all that is needed are many short-term
forecasts.

This methodology estimates the f{*) function for any arbitrary x value by interpolating a smooth
nonlinear curve through all the x values and, using this smooth curve, extrapolates future x
values beyond the historical data set. The methodology employs either the polynomial
functional form or the rational functional form (a ratio of two polynomials). Typically, a
polynomial functional form is sufficient for well-behaved data, however, rational functional
forms are sometimes more accurate (especially with polar functions, ie., functions with
denominators approaching zero).

Procedure e  Start Excel and open your historical data if required (the illustration shown next uses
the file Nonlinear Extrapolation from the examples folder).

o Select the time-series data and select Risk Simulator | Forecasting

Nonlinear Exctrapolation.

®  Sclect the extrapolation type (automatic selection, polynomial function, or rational
function) and enter the number of forecast period desired (Figure 3.11), and click OK.

Results The results report shown in Figure 3.12 shows the extrapolated forecast values, the error

Interpretation measurements, and the graphical representation of the extrapolation results. The error
measurements should be used to check the validity of the forecast and are especially important
when used to compare the forecast quality and accuracy of extrapolation versus time-seties
analysis.

Notes When the historical data is smooth and follows some nonlinear patterns and curves,
extrapolation is better than time-series analysis. However, when the data patterns follow
seasonal cycles and a trend, time-series analysis will provide better results.

HenwuHelHaA akcTpanonaumsa

OﬁpETHTE BHUMAaHWE, 4TO 3KCTpanonAUnA nojpasyMeBaseT co3faHie CTaTUCTUMECKNX NPOrHO30B NPH NOMOLLIN NpoChexnBaEMbI TEH,ElEHLwﬁ 33 WCTeKlIWe Neplofbl, KOTOpsIE NpoeUWpyHTCA
Ha DHPE,D,EJ'IEHHbIﬁ nepwog B EY,D,YLLI'EM. OHa UCNONL3YeTCA TONBKO ANA NPOrHOZ0B EPEMEeHHbIX PRAOE. SKCTpEI'IDJ'\HLl'MH ABNAETCA AO0CTATOMHO HaLeXHbIM, OTHOCUTENBHO NPOCTEIM W HELOPOrMM MeTod oM. O,D,HEKD,
3KCTpanonAynA, KoTopas UCXoOWT U2 TOro, uto BeiBLWKME 1 Terylw e TeH4eHUWn COXPaHATCA U B Ey,u,yu.gem‘ nopoxaaeT Cepee3Hble ownbrn B NPoOrHO3WPOBaHUK, eCNn CNYJYaKTCA 3aMeTHeIe W3MEeHeHUA
Ha NpOTAXEHNN NPOBLUNPYeMOro nepuoga.
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Figure 3.11 — Running a Nonlinear Extrapolation
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HenuHeiiHaA akcTpanonauna

Cratuctudeckan cn paBka

OKCTPaNoNALNA NOAPAasyMeBasT CO3NAHHE CTATMCTMYECKMX MPOSKLMA NPW NOMOWM NPOCTIEXWEBAEMEX WCTOPUYECKNX TREHAO0E, KOTOPLIE NPOSLNPYIOTCA HA ONpPefsneHHEI
nepuog B GyAywem. OHa WCNONL3YeTCA TOMLKO ANA NPOTHO30E BPEMEHHLX PARCE. ANA AaHHLIX, OTHOCAWMICA K Pa3HEIM 0GN3CTAM, M ANA CMEWEHHLIX NaHENEHLIX SaHHSIX
(BPEMEHHEIE PARLI C AAHHLIMM, OTHOCAMMUCA K pasHeIM 0GnacTAm) Gonee NoOXoAAWNM METOROM AENASTCA MHOMECTEEHHAR PErPECCHA. B3Ta METOQNKA ABNASTCA NONE3HON,
KOTGA He NPepgnauTCa CepbesHbi MIMEHBHWA, To 8CTb OMMOABTCA, UTO MPWUMHHLIE BaKTOPEl GYOYT HEW3MEHHLIMU, 3 TAICKEe B TeX CMYYany, KOTA3 MPWYMHHLIE dakTopsl
CHTYALMN HE A0 KOHLA ACHEL OHa TAKkKe MOMOTaeT YCTREHNTE NPOABNEHWA NMYHOM NPpedyGekneHHOCT B NPOLECCE NPOTHOINDOBAHUA. SKCTPANONALNA ABNASTCA OOCTATOYHO
HaAEHHEIM, OTHOCATENLHO NPOCTEIM M HEAOPOTUM METOAOM. OAHEKD, IKCTPANOoNALMA, KOTOPAA MCXOGUT U3 TOTO, UTo GLIBWME W TEKYIME TEHASHLMK COXPAHATCA U B GYAYIWEM,
NOPOXOAET Cepbe3Hble OWMGKM B MPOrHOINPOBZHWN, €CTIN HA NPOTAMEHWA NPOELMPYEMOTO NEPNOOa CMYYaKTCA 3aMeTHHIE W3MeHeHWA. Tak, YiCTaA 3IKCTpanonAuna
EPEMEHHLIX PAROE UCXOAMT M3 TOTO, YTO BCE HeoGX0ANMEIE AaHHEIE UMEHITCA COBAM MCTOPUYECKUX 3HAYEHWA PAGA, ANA KOTOPOro COCTABNASTCA NPOTHO3. ECNu NpegnonoMvTs,
YTO NOBEOEHWE B NpOLWNOM ABNABTCA XOpOWWM cnocofiom NpeacKka’aHinAa NoBefeHnA B ﬁYJ:I.YLLLEM‘ TO 3KCTPANonAuWA npyuemMnema (OHAa oYeHb yacto NpUMEHABTCA B TEX
Cy4anx, Korpa HeoGX0ANMO CO3AATE MHOMECTED KPaTKOCPOYHLIX MPOTHOI0E.

STOT MEeTOd NO3BONAET OUEHWTE ByHKUMIO f(X) ANA MOGOTO NPOM3BONEHOTD 3HAYEHUA X MYTEM WHTEPMOMALMA CTMIAMEHHONA HEMMHEAHOM KPMBON Yepe3 BCE JHAYESHWA X U
MEMOML3I0E3HNA 3TN CINEMKEHHOM KPUEOH. OH A3ET BO3MOMHOCTS IKCTPANONMPOEATE BYAYWME IHAYSHUA X 33 PAMKW M3CCHES WCTOPMYECKIX GaHHbE JaHHsIl MeTog uMeeT
EME, MNOMMHOMWAMNEHOMG BYHKUMOHENE, NMB0 BWO COOTHECEHHOTD (IYHKUMOHANA (COOTHOWEHNE OBYX MHOTOYNEeHoB). OBLINHO BUD NOMMHOMUANBHOMO (YHKUMOHANA ABMAETCA
OOCTATOUHBIM ANA AaHHLX C PEryAPHEIM NOBEAEHWUEM, OOHAKO BUT COOTHECEHHOMO QYHKLMOHAENA B HeKOTOPLIX CMyYamx AENASTCA GONee TOUHsIM (0COBEHHO B Chiyyae ©
NONAPHEIMKM BYHKLMAMK, TO ECTb TAKMMN GYHKUMAMK, 3HAMEHETENN KOTOPLIX CTREMATCA K HYMIO).

Mepuog Tekywuid BulpasHWBAHWE NporHo3a Cwnbka B MaMepeHuax
1 1.00 RMSE  19.6799
2 6.73 1.00 MSE 387.2974
3 20.52 -1.42 MAD  10.2095
4 45.25 99.82 MAPE 31.56%
5 83.59 56.92 U-cTaTMeTuka Teiina 1.1210
G 138.01 136.71
721087 211.96 TUM QYHKLLL: PayuoHans+an
8 30444 304.43
9 42088 420.89
10 562.34 56234
11 730.88 730.85
12 92843 92543
Mpordoz 13 1157.03
MporHos 14 141857
Mpordoz 15 1714.95

Figure 3.12 — Nonlinear Extrapolation Results

3.7 ARIMA Bpemenmnsie passr boxca-A>xenxrrca

One very powerful advanced times-series forecasting tool is the ARIMA, or Awto Regressive
Integrated Moving Average, approach. ARIMA forecasting assembles three separate tools into a
comprehensive model. The first tool segment is the autoregressive (AR) term, which
corresponds to the number of lagged value of the residual in the unconditional forecast model.
In essence, the model captures the historical vatiation of actual data to a forecasting model and
uses this variation or residual to create a better predicting model. The second tool segment is
the integration order (I) term. This integration term cotresponds to the number of differencing
the time series to be forecasted goes through. This element accounts for any nonlinear growth
rates existing in the data. The third tool segment is the moving average (MA) term, which is
essentially the moving average of lagged forecast errors. By incorporating this lagged forecast
errors term, the model in essence learns from its forecast errors or mistakes and corrects for
them through a moving-average calculation. The ARIMA model follows the Box-Jenkins
methodology with each term representing steps taken in the model construction until only
random noise remains. Also, ARIMA modeling uses correlation techniques in generating
forecasts. ARIMA can be used to model patterns that may not be visible in plotted data. In
addition, ARIMA models can be mixed with exogenous variables, but make sure that the
exogenous variables have enough data points to cover the additional number of periods to
forecast. Finally, be aware that due to the complexity of the models, this module may take
longer to run.
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There are many reasons why an ARIMA model is superior to common time-series analysis and
multivariate regressions. The common finding in time-series analysis and multivariate regression
is that the error residuals are correlated with their own lagged values. This serial correlation
violates the standard assumption of regression theory that disturbances are not correlated with
other disturbances. The primary problems associated with serial correlation are:

e Regression analysis and basic time-series analysis are no longer efficient among the
different linear estimators. However, as the error residuals can help to predict current
error residuals, we can take advantage of this information to form a better prediction
of the dependent variable using ARIMA.

e Standard errors computed using the regression and time-series formula are not correct,
and are generally understated, and if there are lagged-dependent variables set as the
regressors, regression estimates are biased and inconsistent but can be fixed using

ARIMA.

ARIMA(p,d,q) models are the extension of the AR model that uses three components for
modeling the setial correlation in the time seties data. The first component is the autoregressive
(AR) term. The AR(p) model uses the p lags of the time series in the equation. An AR(p) model
has the form: 3, = a1 + ... + a1y + . The second component is the integration (d) order term.
Fach integration order corresponds to differencing the time seties. I(1) means differencing the
data once; I(d) means differencing the data d times. The third component is the moving
average (MA) term. The MA(q) model uses the q lags of the forecast errors to improve the
forecast. An MA(q) model has the form: y, = & + biews + ... + byery Finally, an ARIMA(p,q)
model has the combined form: y,= @y + ... + apyp+ e+ brey+ ... + byen,

e  Start Excel and enter your data or open an existing worksheet with historical data to
forecast (the illustration shown next uses the file example file Time-Series ARIMA).

e  Sclect the time-series data and select Risk Simuulator | Forecasting | ARIMA.

e Enter the relevant P, D, O parameters (positive integers only), enter the number of
forecast period desired, and click OK.

For ARIMA and Auto ARIMA, you can model and forecast future petiods by either using only
the dependent variable (Y), that is, the 17z Series 1 ariable by itself, or you can add in exogenous
variables (X7, X3..., Xj) just like in a regression analysis where you have multiple independent
variables. You can run as many forecast periods as you wish if you use only the time-series
variable (Y). However, if you add exogenous variables (X), note that your forecast petiod is
limited to the number of exogenous variables’ data periods minus the time-series variable’s data
petiods. For example, you can only forecast up to 5 petiods if you have time-seties historical
data of 100 periods and only if you have exogenous variables of 105 periods (100 historical
petiods to match the time-series variable and 5 additional future periods of independent
exogenous variables to forecast the time-seties dependent variable).

In interpreting the results of an ARIMA model, most of the specifications are identical to the
multivariate regression analysis (see Modeling Risk: Applying Monte Carlo Simmulation, Real Options
Analysis, Stochastic Forecasting, and Portfolio Optimization, Second Edition, by Dr. Johnathan Mun for
more technical details about interpreting the multivariate regression analysis and ARIMA
models). There are however, several additional sets of results specific to the ARIMA analysis as
seen in Figure 3.14. The first is the addition of Akaike information criterion (AIC) and Schwarz
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critetion (SC), which are often used in ARIMA model selection and identification. That is, AIC
and SC are used to determine if a particular model with a specific set of p, d, and q parameters
is a good statistical fit. SC imposes a greater penalty for additional coefficients than the AIC but,
generally, the model with the lowest the AIC and SC values should be chosen. Finally, an
additional set of results called the autocorrelation (AC) and partial autocorrelation (PAC)
statistics are provided in the ARIMA report.

For instance, if autocorrelation AC(1) is nonzero, it means that the seties is first-order serially
correlated. If AC dies off more or less geometrically with increasing lags, it implies that the
seties follows a low-order autoregressive process. If AC drops to zero after a small number of
lags, it implies that the series follows a low-order moving-average process. In contrast, PAC
measures the correlation of values that are £ petiods apart after removing the correlation from
the intervening lags. If the pattern of autocorrelation can be captured by an autoregression of
order less than 4, then the partial autocorrelation at lag £ will be close to zero. The Ljung-Box
Q-statistics and their p-values at lag £ are also provided, where the null hypothesis being tested
is such that there is no autocorrelation up to order £ The dotted lines in the plots of the
autocorrelations are the approximate two standard error bounds. If the autocorrelation is within
these bounds, it is not significantly different from zero at approximately the 5% significance
level. Finding the right ARIMA model takes practice and experience. These AC, PAC, SC, and
AIC diagnostic tools are highly useful in helping to identify the correct model specification.
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Figure 3.13 — Box-Jenkins ARIMA Forecast Tool
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Figure 3.14 — Box-Jenkins ARIMA Forecast Report
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3.8 AUTO ARIMA (Ycaoxxaéauapsre ARIMA
BpemeHHBIE pAABI Boxca-A>xeHxnrca)

Theory While the analyses are identical, AUTO ARIMA differs from ARIMA in automating some of
the traditional ARIMA modeling. It automatically tests multiple permutations of model
specifications and returns the best-fitting model. Running the Auto ARIMA is similar to regular
ARIMA forecasting, with the difference being that the P, D, Q inputs are no longer required
and different combinations of these inputs are automatically run and compared.

Procedure e  Start Excel and enter your data or open an existing worksheet with historical data to
forecast (the illustration shown in Figure 3.15 uses the example file Advanced
Forecasting Models in the Examples menu of Risk Simulator).

e In the Auto ARIMA worksheet, select the data and click on Risk Sizzulator | Forecasting
| AUTO-ARIMA. You can also access this method through the forecasting icons
ribbon, or right-clicking anywhere in the model and selecting the forecasting shortcut
menu.

e (lick on the link icon and link to the existing time-series data, enter the number of
forecast petiods desired, and click OK.

Notes For ARIMA and Auto ARIMA, you can model and forecast future petiods by either using only
the dependent variable (Y), that is, the Tzwe Series 1 ariable by itself or you can add in exogenous
variables (X7, X5,..., X) just like in a regression analysis where you have multiple independent
variables. You can run as many forecast periods as you wish if you use only the time-series
variable (Y). However, if you add exogenous variables (X), note that your forecast period is
limited to the number of exogenous vatiables’ data periods minus the time-series vatiable’s data
petiods. For example, you can only forecast up to 5 periods if you have time-series historical
data of 100 periods and only if you have exogenous variables of 105 periods (100 historical
periods to match the time-series variable and 5 additional future periods of independent
exogenous variables to forecast the time-series dependent variable).
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Figure 3.15 - AUTO ARIMA Module
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3.9 bazoBasa sKkOHOMETPHKA

Econometrics refers to a branch of business analytics, modeling, and forecasting techniques for
modeling the behavior or forecasting certain business or economic variables. Running the Basic
Econometries models is similar to regular regression analysis except that the dependent and
independent variables are allowed to be modified before a regression is run. The report
generated and its interpretation is the same as shown in the Multivariate Regression section
presented earlier.

e  Start Excel and enter your data or open an existing worksheet with historical data to
forecast (the illustration shown in Figure 3.16 uses the file example file Advanced
Forecasting Models in the Examples menu of Risk Simulator).

e Sclect the data in the Basic Econometrics worksheet and select Risk Sinulator | Forecasting
| Basic Economsetrics.

e Enter the desired dependent and independent variables (see Figure 3.16 for examples)
and click OK to run the model and report, or click on Show Results to view the results
before generating the report in case you need to make any changes to the model
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385 | 16728 | 200 | 3294 | 318 5 A A R B st vemavama
il Hatad| o ol ek i VARL VARZ  VAR3  VAR4 VAR VARG B
fele | | e | e st | 52 8308 185 4041 796 72
764 | 38927 | 384 | 12938 | 2396 | 73 e . 2 : 5
Sl [Bestecdl B 05 B AT AT i ] LR 1665 323 57
153 T 320 | 1108 | 1725 | 28 s e —— )
231 3136 197 1.007 122 6.1 614 100484 432 29.76 1908 7.5
524 | 50508 | 286 | 11431 | 2086 | 71 o e T 5 |
328 | 28886 | 173 | 5544 | 1546 | 59 e B s T o
220 | 16936 | 190 | 2777 | 497 46 @ O monens
286 | 13035 | 239 | 2478 | 303 44
205 | 12073 | 190 | 3685 | 928 74 G :
569 16309 24 422 96.9 i | LN(VAR1) LN(VAR2); VAR3"VAR4; LAG(VARS, 1); DIFF(VARS);
9% 5297 189 1228 398 75 vanp, LNVAR ) TIME —
498 | 19235 | 388 | 4781 | 4892 | 59 L— o (55 ARRARS, BRI LASTARES, ASS SESOUL
| o | 38 | &6 | &6 5 P OGILAG  NARiLa iSRRI IARbe DR e AT .
168 44213 303 9.295 163.6 92 . IKOHOMETPHUECKHE pesyABTaTS! [ o[ E i
77 | 23619 | 228 | 4375 55 51 Hechmno Hopned
198 9106 134 2573 549 8.6 R-KEAZPAT (KOOPPHLIEHT LETEPMIHELIK) 05231
458 | 24917 | 189 | 5T | 743 6.6 Creppernpsemmon F saszoer 04883
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i
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291 2373 | 417 | 1202 | 109 55 TEGERT Hi . Fcrammerncs ANOVA: 92137
68 7128 | 233 | 1109 | 1237 | 72 = e 00000
311 | 23624 | a9 | 773 | 142 | 66 INTEGER2: Mias Makc Pammm
606 5242 284 1.515 125 6.9 INTEGER3: M. Maxc Intercept LN(VAR2) VAR3"VAR4 LAG(VARS,1) DIFF(VARE) TIME
512 | 92620 | 499 | 1799 | 381 72 Coefiicerts  3.1049 02726 0.0000 0.0011 00219 20125
426 | 20795 | 23 6.629 | 136.1 5.8 Standard Eror  0.8347 00974 0.0000 0.0003 0.032 00049
1-Statistic 34703 28001 0.7885 3.8576 06796 -2.5234
;s75 :;}8;9 ;:; fu' 13497 zgja é’l pValue 00012 00077 04348 0.0004 05005 00155
370 | 14067 | 195 | 3146 | 458 67
312 | 12693 | 288 | 2842 | 296 6 I ——
200 | 62184 | 209 | 11882 | 2651 69 LN(VART)
280 9153 | 267 | 1.003 | 960.3 8.5 !
759 | 14250 | 224 | 3487 | 1158 6.2

Figure 3.16 — Basic Econometrics Module

e To run an econometric model, simply select the data (B5:G55) including headers and
click on Risk Simulator | Forecasting | Basic Econometrics. You can then type in the
variables and their modifications for the dependent and independent variables (Figure
3.16). Note that only one variable is allowed as the Dependent 1 ariable (Y), wheteas
multiple variables are allowed in the Independent 1 ariables (X) section, separated by a
semicolon (;), and that basic mathematical functions can be used (e.g., LN, LOG,
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LAG, +, -, /, *, TIME, RESIDUAL, DIFF). Click on Show Resulis to preview the
computed model and click OK to generate the econometric model report.

e  You can also automatically generate Multiple Models by entering a sample model and
using the predefined INTEGER(N) variable as well as Shifting Data up or down
specific rows repeatedly. For instance, if you use the variable [.AG(1”ARI,
INTEGERT) and you set INTEGERT to be between MIN = 1 and M.AX = 3, then
the following three models will be run: LAG(1.ART,7), then L.AG(1ART,2), and,
finally, .AG(1"ART,3). Also, sometimes you might want to test if the time-series data
has structural shifts or if the behavior of the model is consistent over time by shifting
the data and then running the same model. For example, if you have 100 months of
data listed chronologically, you can shift it down 3 months at a time for 10 times (i.e.,
the model will be run on months 1-100, 4-100, 7-100, etc.). Using this Multiple Models
section in Basic Econometrics, you can run hundreds of models by simply entering a
single model equation if you use these predefined integer vatiables and shifting

methods.

3.10 I'lporuossr J-S Kpusbrx

The ] curve, or exponential growth curve, is one where the growth of the next period depends
on the current period’s level and the increase is exponential. This means that over time, the
values will increase significantly, from one period to another. This model is typically used in
forecasting biological growth and chemical reactions over time.

e Start Excel and select Risk Simulator | Forecasting | ]S Curves.

e Select the | or S cutve type, enter the required input assunptions (see Figures 3.17 and 3.18
for examples), and click OK to run the model and report.

The S curve, or logistic growth curve, starts off like a | curve, with exponential growth rates.
Over time, the environment becomes saturated (e.g., market saturation, competition,
overcrowding), the growth slows, and the forecast value eventually ends up at a saturation or
maximum level. This model is typically used in forecasting market share or sales growth of a
new product from market introduction until maturity and decline, population dynamics, growth
of bacterial cultures, and other naturally occurring variables. Figure 3.18 illustrates a sample S
curve.
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J-o6pa3Hble KPMBbIe 3KCMOHEHUNaNbHOro pocTa

B matemarike nog SKCNOHEHUMANkHEIM POCTOM MOAPa3YMEBAETCA YBENNUSHUE BEMWUMHEI NMPOMOPUMOHANEHO ee Tekyliemy sHadeHn. MogobHei poct
NPOMCXOANT B COOTBETCTBMW C 3KCMOHEHUWANbHeIM 3akoHom. Takum ofpazom, nofas akCnoHeHUMAansHO PacTyllad BennuiHa YBENWUMBEETCA TeM
GuicTpee, yen Gonblie oHa cTasoBuTCA. OHAKD OTHOLUEHWE paamepa 3aBMCHAMONA NMEepEMEHHOA W CKOPOCTM ee pocTa YNpaBnAETCA CTPOMMM 3aKOHOM:
npAmoil nponopurei. OB WA NPUHLMN JKCNOHEHUMANbHOMD pPOCTa MOMHO CHlOpMyNUPOBaTL CReAyolWnM 0Gpa3omM: YeM GONbLUE CTEHOBHTCA YMCAD. TEM
BricTpes oHo pacTeT. M6an SKCNOHEHUMANEHO PACTYLLEA BENMUMHA HA MPOTAXKEHUN O4HOTO W TOMD e OTPE3Ka BpemMeHn GyaeT yBenuunBarscA GeicTpee,
uem NOaA BEMWUMHA, PACTYLLaA C NOCTOAHHOM CKopocTek. MeTod NporHo3WpoBaHWA NpU NOMOLLK J-0Bpa3HeIX KPMBLIX NOMYYMA HA3BaHWe 33 CXOACTBO
kpueoi pocta © Bykeoil J. Y 4aHHOA KPMBORA HET Npejena MaKCUMAan:HOro YBennueHWA. K npoynmM KpMERIM DPOCTa OTHOCATCA S-00pasHele KPUBLIE W LN
Mapkoea.

[Onm coagaHuA nporHosa no Mmetody J-0bpasHoi KpUBOR, BEINONHUTE CREqYOLWMe BefcTBUR:

1. Haxmure Risk Simul | Mpor: p | JS-0bp e KpHELIE P Rea] U]JtlU]'IS

2. Bribepute 3 HaRA J- P W BBEAMTE ¥Enaemele UCKXOAHb 'v a] ud t on
(HaNpUMEp, HaYankHoe 3HaYeHne 100 CKOPOCTE POCTA 5 NPOUEHTOB, KOHEUHBIA 3Tan 1L,  Wmresieptensslsioncom

3 Hamnute OK ANA CO03[4aHWA NpOrHo3a, a 3aTem NpoBepsTe OTYET O NPOrHo3e

@ J-5-ofpasHble kpushie &J‘

J-5-00pEsHbIE KPUBLIE BRNIOYBIOT J-0fPE3HEIE KPMBLIE 3KCNOHEHLMENEHOTD POCTE W
KPMBBIE NOMWCT pocTa. 3Ti KPUBLIE UCTIONESYIOTCA ANA
NPOTKOSMPOBEHMA CTABOK C BLICOKNM IOK33ATENEM POCTS (J-0Bpa3Hbie Kpuskie)
MW B TEX CHTYBUMAX, KOTAR WSHAYANEHO BEICOKWA POCT SAMEARETCA NO
[OCTHONEHIW NEPUOAE SPENCCTH, TEK KEK CPEaE HackWwaeTc (S-o0pasHuie kpuBLie).

iFKCnoHeHuMaNLHEA J-o0pash ! NomcTiueckan 5-08pasHan KpHMBaR

HauanbHos sHaueHne: 100

VpoBess pocta (%) 5

VPOBEHE HECEILLEHHOCTH.

O6iWan NPOrHoSHEA KPHBIRA Ha OCHOBSHMM CNEIYHOUMK NEPHONOE:

Koneunei nepwo (100

OK ] [ Ommena ]

Figure 3.17 — J-Curve Forecast

Noructnyeckan S-oGpasHan KpuBan

TNorucTnyeckas dyHKLUMA (MW NOTUCTMYECKAR KpuBaA) mogenupyeT S-00pa3nHyto KpuByH pocTa kakoi-ninbo nepemenHoi. HauanbHas cTaauA pocTa ABNAETCA NPHONN3NTENEHD 3KCMOHEHUMANBHON,
33TeM N0 Mepe YBENWYEHNA KOHKYDEHUMA POCT 3aMeANAETCA, 8 N0 AOCTUAEHNN 3Tana 3apenocTh NpeKpalyaeTcA BoBCe. [aHHeie yHKUMN HAX0AAT NPUMEHeHNe B pAAe obnacTel - oT Guonorum
J10 3KOHOMWKW. Hanpumep. B xo4e pa3suTnA 3mMOpHOHa 0NNDJOTBOPEHHAA ANLIEKNETKA HAYNHAET 1eNUTLCA, 3 YUCNO KNeTok npu Aenenun pacter: 1, 2, 4, § 16, 32, 64 n 1. 4. 310
IKCNOHEHUMANLHEIA POCT. Ho NNOA MOXKET pacTH TONLKS A0 TeX NOP, NOKA NO3BONAKT pa3mMepsl MaTkK, Takum obpasom, Npoune GakTopsl HAYMHAKT 3aMeANATE NPOLECT AeNeHUR KNETOK,

W CKOPOCTE POCTA CHUKABTCA (Ho peleHok, KoHeuHo e, npodomxaet pactu). Mo NpolecTNA onpeeneHHoro BpemaHi pebeHok poxaaeTCA HA CBET U NPOAOMKAET pacTi. B KoHeuHom wrore,
JAeneHie KNeTok cTabunuanpyeTcA, paaMepsl Yen08eKa CTAHOBATCA HEM3MEHHLIMA, W K MOMEHTY 3DenocTi POCT NPeKpalyaeTca. Te e NPHHLMNEL MOTYT BulTe NPUMEHIME! U K POCTY NONYAALMK
KMBOTHBIX UMK NHOASHA, K NPOHMKHOBEHMK) HA PelHOK W NpHBLINEHOCTM NPOAYKTA. Ha HauaneHOM 3Tane NPOHWKHOBEHWA HA PeIHOK HAONKAaeTCA BCNNeCK KPUBOIA pocTa, HO Aanee

3aMeINAETCA B CUNY BAUAHNS KOHKyPeHUMM. B koHeuHom utore paciumpesie o6bema phiHKa NpeKpalLaeTc, Tak Kak PeiHOK HACLIL|AeTCA A0 CBOErD Npejena.

1. Haxmute Risk Simul | Mpor p | JS- i€ KPHEBIE
HEH] UDU.UHS 2. Beegute HeobX0o4uMble MCXOAHEIE 3HAYEHUA (CM. NPUMED HItKE)
'v a ud t lon 3. Haxmute OK 1 NpoBepeTe OTYET O NPOrHO3E
WA realoptionsy Auation.com
7,000
s 5
5,000 [R] J-5-oBpashste kpussie |
5000 Matl-l}'ifv and J-5-06pasHLie KpUBbE BENIOYEIOT J- KpHBLIE pocTa 1
i Saturation Phase S-0fipasHbie KPHBLIE NOTMCTMMECKOND POCTS. 3T KDUBLIE MCTIONLSYIOTCA ANA
NPOrHO3MPOEEHKA CTEEOK C ELICOKMM NOKE3ETENEM POCTE [Jv\ipasnme KPMBBIE]
& 4000 Wnn & Tex cuTy , Korma BHICORWIA pocT
£ [BOCTIORKEHIM TEPUOE SPENOCTH, TEK KaK CPENE HACHIBETCH (S—cﬁpasm:le KpHEBIE)
> 3000 =
") 3xcnokexumanchan J-o0pasHan KpuMBaA NomcTiueckan S-o6pasHan KPUBaRA
2000 { Initial Growth Phase ;
HauansHoe sHaqenne: 200
Phase L
1,000 Yposens pocta (%) 10
"'g . Yposers HacsiensocTh | 6000
t L
0 20 30 40 1] 80 100 061WaR NPOMHOSHEA KPUB3A HA OCHOEAHWM CTEOYIOLMVK NEPUOA0E;
Period Koneuttid neprom: | 100
| 0K QOrrena
\

Figure 3.18 — S-Curve Forecast
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3.11 Ilporxossr BosarumasHOCcTH GARCH

The generalized autoregressive conditional heteroskedasticity (GARCH) model is used to
model historical and forecast future volatility levels of a marketable security (e.g., stock prices,
commodity prices, oil prices, etc.). The data set has to be a time series of raw price levels.
GARCH will first convert the prices into relative returns and then run an internal optimization
to fit the historical data to a mean-reverting volatility term structure, while assuming that the
volatility is heteroskedastic in nature (changes over time according to some economettic
characteristics). The theoretical specifics of a GARCH model are outside the purview of this
user manual. For more details on GARCH models, please refer to Advanced Analytical Models, by
Dr. Johnathan Mun (Wiley Finance, 2008).

e  Start Excel and open the example file Advanced Forecasting Model, go to the GARCH
worksheet, select the data and click on Risé Simulator | Forecasting | GARCH.

e Click on the link icon, select the Daza I ocation, enter the requited input assumptions
(see Figure 3.19), and click OK to run the model and report.

Note: The typical volatility forecast situation requires P = 1, Q = 1, Periodicity = number of
petiods per year (12 for monthly data, 52 for weekly data, 252 or 365 for daily data), Base =
minimum of 1 and up to the periodicity value, and Forecast Periods = number of annualized
volatility forecasts you wish to obtain. There are several GARCH models available in Risk
Simulator, including EGARCH, EGARCH-T, GARCH-M, GJR-GARCH, GJR-GARCH-T,
IGARCH, and T-GARCH. See the chapter in Modeling Risk, Second Edition, by Dr. Johnathan
Mun (Wiley Finance, 2010), on GARCH modeling for more details on what each specification
is for.

P ‘I}Eal UDtlUnS 0OboblweHHan aBToperpeccMoHHan ycnoBHan retepockenacTudHocTb (GARCH)

aluatien

wevew realoptionsvabuation com

Wctopuyeckue faHHele

JiCT" "CXDEHI:IE AaHHble Ans cosnannA mogenn GARCH. BBefnTe CODTBETCTBYHILLNE AAHHEIE BPEMEHHOMD pAAa, a aaTem Haxmute Risk Simulator |
1 459.11 Mpordozupoeanue | GARCH 1 HaxmuTe Ha NUKTOrpaMMY GELITKU HA PACTONOHKEHNA JaHHbIX, Baibepute 06nacTe ucTopuueckux AaHHsX
2 460.71 (Hanpumep, C8:C2428). Beepure Heobxoaumble nCxXofHble 3HaueHns (Hanpumep, P 1, Q 1, exeaHesHan nepuognyHocTs Topros 252,
3 460.34 nporHoaxan basa 1. nporvoansie nepuoasl 10) u vaxmute OK. MpoBepsTe co34aHHbII OTYET O NPOrHO3e.
4 460.68
5 460.83 AnsA TpeHMpOBKY CO34aiTe MOLENL ANA Kaxgoil pasHoenarocTn GARCH n cpashute peayneTarsl. GyHKUMOHANEHLIA BAL W CieyvukaLmn
6 461.68 ANA KaKAO0H pasHOBUAHOCTH MOLENK NPUBEAEHEl B PYKOBOACTES NONb30BATENA:

7 461.66 GARCH, GARCH-M, TGARCH, TGARCH-M, EGARCH, EGARCH-T
8 461.64 GJR GARCH, GJR TGARCH
9 465.97
10 469.38 N
by o GARCH =)
12 469.72 Mogenn aETopErp: yenoatod watsocTH (GARCH)
13 466.95 CTIQBSYIOTCA TR NPOrHOSMPOBEHVA BANGTHNBHOCTY MHGHCOBLIX MHCTRYMEHTOB NPH NOMOWLN
" 46478 camux ten. Mopens GARCH (P.Q) nosBonAeT 33/36aTh pasniuHbie NONCXUTENEHEIE USMLE
g SHaveHKA NapaMeTpos P 1 O GnA ypasHeni Cpeasei BENVMUHG (HOBLIX) M YPaBHEHM
15 465.81 avcnepcni, Creayer oBpaTHTL BHHMAHKE, HTO TAMbKO NONCIKATENGHEIE SHINEHHA MOTYT
16 465.86 WCIONbS0BATLCH NPH c mopenn GARCH.
17 467.44 Moa NepraMMHHOCTEIC NCHUMEETCA |HCNIO NEPWONOE Ha NPOTAXEHMK roaa (Hanpumep, 12 ana
- EXEMECAYHLIX BHHLIX, 252 ANA EXeHEBHbIX TOPrOBLX AaHHLIX, 365 ANA exenHEBHbX
18 468.32 pBHHEIK), 4TOSk! NPEACTABKTE BONETHNLHOCTE B FOAOBOM WCUMCIEHIM WM MIDHKETE 33
19 470.39 nepomtHHy0 ECTETWREHOCTS, (100 G220/l NOAP33YMEERIOTCR NepHOas NporHeaon Gast! (10
€CTb, CKOMBKQ NEPHOROB WS NIPOLLIIOTD CREAYET MCNONL3CEATE B KAYECTBE OCHOBL! AR
20 468.51 POrHOSHPOBaHA BORATRALHOCTH & GyMyLLIEM, HanpHMep, EBepyTe 12, ecnu Geperca 12
pal 470.42 npownsix nepreacs). Moa T }0oapasy 6
22 4704 BOGBPETA NPY NPOTHOSUPOBAHIN BONATUNBHOCTH K PACHETHON AONTOCPOMHON CEPEMMHE B K3KGH
; nuGo MoMEHT Bpemet. HeoBpaGoTathbie SaHHbIe N0 LeHaM CrEayeT pacnonarae
23 AT2.78 8 (o7 Gonee cTapeix K Sonee ceexvm,
24 478.64 B OAHY KONOHKY, COCTORLLYHO K3 HECKONBKMX CTPOK)
25 481.14 MecTonaxoxnenue nakkene:  [CB.C2428 E
26 480.81
27 481.19 Ceanate Monens GARCH (P.Q) ans:
28 480.19 B0 | @1 | Mepwommroeme: 252 | Basa: 1 e [ m
29 481.46 repuom
30 481.65 &
Mpumerms TapreTiposaHye AHCTIEpCit
kMl 482.55
32 484.54 @ GARCH @ GARCH-M © TGARCH
33 485.22 = A - A A -
34 481.97 - TGARCH-M - EGARCH - EGARCH-T
35 482,74 © GJRGARCH © GJRTGARCH @ Buinonsums ace Mogeny
36 485.07
37 286,91
38 488.11
39 483.81

Figure 3.19 — GARCH Volatility Forecast
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3.11.1 GARCH The accompanying table lists some of the GARCH specifications used in Risk Simulator with
Equations two underlying distributional assumptions: one for normal distribution and the other for the t
distribution.
Z, ~ Normal Distribution Z, ~ T-Distribution
GARCHM | 'y —¢c1 10 +¢, Y, =C+ Aol +&
Variance in _ _
& = 0Ly & =0y
Mean 2 2 2 2 2 2
Equation Oy =o+ag ,+ ﬂo-t—l Oy =@+ag,+ IBGt—l
GARCH-M |y =c+ Ao, +¢, Y, =C+ Ao, +¢
Standard — —
& =0,L & =0,L
Deviation ! tt t tt
2 2 2 2 2 2
i Mean o, =w+ag ,+ po; o, =w+ag , + po;,
Equation
GARCHM | 'y — ¢4+ 2In(c?) +¢, y, =c+AIn(c?) +¢,
Log _ _
Variance & =0 & =0
2 _ 2 2 2 _ 2 2
in Mean Oy =otag,+ ﬂat—l Oy =@+ag,+ ﬁat—l
Equation
AR — —
GARCH Yi =Xy + & Ye =&
ol =w+agl, + fol, & =04,
ol =w+ag’,+ Bol,
EGARCH Y =& Yo =&
& = 0L, & = 0L,
In(Gtz):a)+,8-|n(Gf_l)+ |n(of)=w+,6’-ln(oﬁl)+
&, &, & &,
SL-E(lg) [+r= a| [ -E(lg]) [+r==
t1 O Ot t1
qu |)_ 2 qu |)_ 2\v=2T((v+1)/2)
LT t (v=DI(v /27
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GJR- _ _
G{ARCH Yo =4 =4
& =0 & = 0L
2 2 2 2
ol =w+ag’,+ ol =w+ag+
2 2 2 2
re_d.,+pBo, re ,d., +po,
q 1 if & ,<0 g 1 if g, <0
o otherwise o otherwise

For the GARCH-M models, the conditional variance equations are the same in the six
variations but the mean questions are different and assumption on Z; can be either normal

distribution or t distribution. The estimated parameters for GARCH-M with normal
distribution are those five parameters in the mean and conditional vatiance equations. The
estimated parameters for GARCH-M with the t distribution are those five parameters in the
mean and conditional variance equations plus another parameter, the degrees of freedom for
the t distribution. In contrast, for the GJR models, the mean equations are the same in the six
variations and the differences ate that the conditional vatiance equations and the assumption on

Z, can be either a normal distribution or t distribution. The estimated parameters for

EGARCH and GJR-GARCH with normal distribution are those four parameters in the
conditional variance equation. The estimated parameters for GARCH, EARCH, and GJR-
GARCH with t distribution are those parameters in the conditional variance equation plus the
degrees of freedom for the t distribution. More technical details of GARCH methodologies fall
outside of the scope of this book.

3.12 IL{errr MapkoBa

A Markov chain exists when the probability of a future state depends on a previous state and
when linked together form a chain that reverts to a long-run steady state level. This approach is
typically used to forecast the market share of two competitors. The required inputs are the
starting probability of a customer in the first store (the first state) will return to the same store in
the next petiod versus the probability of switching to a competitor’s store in the next state.

e Start Excel and select Risk Simulator | Forecasting | Markov Chain.

o Enter in the required input assumptions (see Figure 3.20 for an example) and click OK to run
the model and report.

Set both probabilities to 10% and rerun the Markov chain and you will see the effects of
switching behaviors very clearly in the resulting chart.
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MporHos no metoay uenei Mapkosa unu npouecc MapkoBsa

Teopua npoyeccos Mapkosa umeeT Gonbluoe 3HaYEHUE NPH HAYYEHUY IBOMHOUMOHMPOBAHHA CUCTEM NPH NOMOLWLHM HECKONEKHX ONLITOB, NOBTOPASMBIX Ha NPOTAXEHHM NOCNEA0BATENEHEIX NepUoA0E Bpemeny. COCTORHME CHCTEMb!
B ONPEAENEHHLIA MOMEHT BPEMeHH HEW3BECTHO, M HCCNeA0BaTeNb 3aHHTEPRCOBAH B YCTaHOBNEHVN BEPOATHOCTY CYLLeCTBOBAHNA ONPeAenEHHOre COCToAHKMA. HanpuMep, uenv Mapkosa nenonbaykrea

ANA BEIYVCNEHNA BEPOATHOCTH TOO, YTO ONPEAENeHHaA MaLLNHA NN YCTROACTBO NPOACTKMT PYHKUHOHVPOBATE ¥ B NOCNEAYIOLLMA NepuoA. MokHo TaloKke BHICYHTATE BEPOATHOCTL NpUoBpPeTeHnA nokynatenem

npoaykta A B byayuiem, nubo BepOATHOCTL TOMD, 4TO OH NPEANOMTET KOHKYPEHTHSIR NpoAyKT B

NinA coapannA npougcca Mapkoga, BeINONHUTE CREAYHOL|ME AeiCTBUA®

1. Hasmure Risk Si Imp p I Lient M Leny Maprosa =)
2. BeeauTe COOTEETCTEYHILLHE 3HAYEHWA BEPOATHOCTH COCTOAHMA (Hanpumep, 30 u 80
Lienw Mapkosa SBRAIOTCA CueHt 3chheKTHBHBIMH MHCTRY MEHTAMY GHANKSE NP

mpoueros) w Hakire OK MOREIAPORSHHH NEPEXDE OT AHOTO COCTORKYS MPAPORS! K APYTGI  YCTGHOBEHIR
3. MpoBepsTe CO34aHHLIH OTYET O NPOrHO3e B KOHEYHOM KTOTE OMMOCPOYHOND PABHOBECHA (HBANPUMED, PHIKOYHOR ROMH)
Hanpihep, uenm MapkoBs HCTONESYIOTCR ANR BLIMVCTEHVR BEPCATHOCTA TOMD, 4TG
ONPERENEHHAA MBLIMKE WNK Y CTPOICTEO NPOMCITKMT RYHKUMOHIPOBATE 1 B

Coger: Ina HHTepesymmeﬂ MoAeny cocTeaHnA nonpolyiite ncnons3cears 10% ana oBoux nocneaytolwil nepron. Moxio TaIoke BbICHHTATE BEpOATHOCTE MPHOBRETEHIR
MCXOAHEIX 3HAYSHHI BEPOATHOCTH, @ 3aTeM 03HAKOMBTECKE C COIAAHHLIM OTYETOM. noKyTIaTEneM NpoayKTa A 8 GyayweM, mBe BepOATHOCTL TOTD, HTO Of NPEANCHTET
KOHKY PEHTHEIR NpofyKT B
Real Options BeponThocTe npeStiszkua & Coctorrim 1 npu wauane ¢ Coctoanim 1(%): 90
I,% Valu E?t 100 BepoATHocTe NpeSbisakua B CocTorrmm 2 npu Hauane ¢ Coctoamim 2 (%): 80
=

W e l0pionEY skistion.com

Otmena

Figure 3.20 — Markov Chains (Switching Regimes)

3.13 OrpanmaeHHbIC 3aBHCHMBIE IIEPEMEHHBIC:
Aorut, npobnr, Tobur. Flcrioas3oBaHme
MAKCHMAABHOI'O IIPHOAIPKEHHA K ITOIIYAALIHH

Theory The term Limited Dependent 1 ariables describes the situation where the dependent vatiable
contains data that are limited in scope and range, such as binary responses (0 or 7) or truncated,
ordered, or censored data. For instance, given a set of independent variables (e.g., age, income,
education level of credit card or mortgage loan holders), we can model the probability of
default using maximum likelihood estimation (MLE). The response, ot dependent variable Y, is
binary. That is, it can have only two possible outcomes that we denote as 7 and 0 (e.g., Y may
represent presence/absence of a certain condition, defaulted/not defaulted on previous loans,
success/ failure of some device, answer yes/no on a survey, etc.). We also have a vector of
independent variable regressors X, which are assumed to influence the outcome Y. A typical
ordinary least squares regression approach is invalid because the regression errors are
heteroskedastic and non-normal, and the resulting estimated probability estimates will return
nonsensical values of above 7 or below 0. MLE analysis handles these problems using an
iterative optimization routine to maximize a log likelihood function when the dependent
variables are limited.

A Logit or Logistic regression, is used for predicting the probability of occurrence of an event
by fitting data to a logistic curve. It is a generalized linear model used for binomial regression,
and, like many forms of regression analysis, it makes use of several predictor variables that may
be either numerical or categorical. MLLE applied in a binary multivariate logistic analysis is used
to model dependent variables to determine the expected probability of success of belonging to
a certain group. The estimated coefficients for the Logit model are the logarithmic odds ratios
and cannot be interpreted directly as probabilities. A quick computation is first requited and the
approach is simple.

Specifically, the Logit model is specified as Estimated Y = LIN/P;/ (1-P))] ot, convetsely, P; =
EXP(Estimated Y)/ (1+EXP(Estimated Y)), and the coefficients 5 ate the log odds ratios. So,
taking the antilog, or EXP(f), we obtain the odds ratio of P;/(7—P)). This means that with an
increase in a unit of Sz the log odds ratio increases by this amount. Finally, the rate of change is
the probability dP/dX = pPy(1-P). The standard error measures how accurate the predicted
coefficients are, and the t-statistics are the ratios of each predicted coefficient to its standard
error and are used in the typical regression hypothesis test of the significance of each estimated
parameter. To estimate the probability of success of belonging to a certain group (e.g.,
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predicting if a smoker will develop chest complications given the amount smoked per year),
simply compute the Estimated Y value using the MLE coefficients. For example, if the model is
Y =1.1+0.005 (Cigarettes), then someone smoking 100 packs per year has an Estimated Y of 1.1
+ 0.005(100) = 1.6. Next, compute the inverse antilog of the odds ratio by EXP(Estimated
Y)/[1 + EXP(Estimated Y)] = EXP(1.6)/(1+ EXP(1.6)) = 0.8320. So, such a person has an
83.20% chance of developing some chest complications in his or her lifetime.

A Probit model (sometimes also known as a Normit model) is a popular alternative
specification for a binary response model, which employs a probit function estimated using
maximum likelihood estimation and the approach is called probit regression. The Probit and
Logistic regression models tend to produce very similar predictions where the parameter
estimates in a logistic regression tend to be 1.6 to 1.8 times higher than they are in a
corresponding Probit model. The choice of using a Probit or Logit is entirely up to
convenience, and the main distinction is that the logistic distribution has a higher kurtosis (fatter
tails) to account for extreme values. For example, suppose that house ownership is the decision
to be modeled, and this response vatiable is binary (home purchase or no home purchase) and
depends on a series of independent variables X; such as income, age, and so forth, such that I;
= fo + piXs +..+ 5.X, where the larger the value of I, the higher the probability of home
ownership. For each family, a critical I* threshold exists where, if exceeded, the house is
purchased, otherwise, no home is purchased, and the outcome probability (P) is assumed to be
normally distributed such that P; = CDF(]) using a standard normal cumulative distribution
function (CDEF). Therefore, using the estimated coefficients exactly like those of a regression
model and using the Estimated Y value, apply a standard normal distribution (you can use
Excel’s NORMSDIST function or Risk Simulator's Distributional Analysis tool by selecting
Nornal distribution and setting the mean to be 0 and standard deviation to be 7). Finally, to
obtain a Probit or probability unit measure, set I; + 5 (because whenever the probability P; <
0.5, the estimated [; is negative, due to the fact that the normal distribution is symmetrical
around a mean of zero).

The Tobit Model (Censored Tobit) is an econometric and biometric modeling method used to
describe the relationship between a non-negative dependent variable Y; and one or more
independent variables Xi. The dependent variable in a Tobit econometric model is censored; it
is censored because values below zero are not observed. The Tobit model assumes that there is
a latent unobservable variable Y*. This variable is linearly dependent on the Xj; variables via a
vector of g coefficients that determine their interrelationships. In addition, there is a normally
distributed error term U; to capture random influences on this relationship. The observable
variable Y’ is defined to be equal to the latent variables whenever the latent variables are above
zero and is assumed to be zero otherwise. Thatis, Y; = Y*if Y*>0and Y; = 0if Y* = (. If the
relationship parameter f; is estimated by using ordinary least squares regression of the observed
Y; on X, the resulting regression estimators are inconsistent and yield downward-biased slope
coefficients and an upward-biased intercept. Only MLE would be consistent for a Tobit model.
In the Tobit model, there is an ancillary statistic called sigzza, which is equivalent to the standard
error of estimate in a standard ordinary least squares regression, and the estimated coefficients
are used the same way as a regression analysis.

e Start Excel and open the example file Advanced Forecasting Model, go to the MLE
worksheet, select he data set including the headers, and click on Risk Simulator |
Forecasting | Mascinmm Likelihood.

o Select the dependent variable from the drop-down list (see Figure 3.21) and click OK to run
the model and report.
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Figure 3.21 — Maximum Likelihood Module
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3.14 Crsaria (KyOH9IeCKHX CIIAAHH-HHTEPITOAAITHH
H 3KCTPAITOAALIHI)

Theory Sometimes there are missing values in a time-series data set. For instance, interest rates for years
1 to 3 may exist, followed by years 5 to 8, and then year 10. Spline curves can be used to
interpolate the missing years’ interest rate values based on the data that exist. Spline curves can
also be used to forecast or extrapolate values of future time periods beyond the time period of
available data. The data can be linear or nonlinear. Figure 3.22 illustrates how a cubic spline is
run and Figure 3.23 shows the resulting forecast report from this module. The Known X
values represent the values on the x-axis of a chart (in our example, this is Years of the known
interest rates, and, usually, the x-axis values are those that are known in advance such as time or
years) and the Known Y values represent the values on the y-axis (in our case, the known
Interest Rates). The y-axis variable is typically the variable you wish to interpolate missing values
from or extrapolate the values into the future.

Real Options S mmRE s e
WHTepnonAuMA 1 3KCTPanonAuMA KyG1yecKoro cnnaiHa r‘{‘l Valuatien e i —
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Figure 3.22 — Cubic Spline Module

Procedure e  Start Excel and open the example file Advanced Forecasting Model, go to the Cubic Spline
worksheet, select the data set excluding the headers, and click on Risk Simulator |
Forecasting | Cubic Spline.

e The data location is automatically inserted into the user interface if you first select the
data, or you can also manually click on the link icon and link the Known X values and
Known Y values (see Figure 3.22 for an example), then enter in the required S7ar/ng and
Ending values to extrapolate and interpolate, as well as the required S7p Size between
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these starting and ending values. Click OK to run the model and report (see Figure
3.23).

MporHosnpoBaHue KyG4eCcKUX cnnanHoB

Mogenb NoNUHOMUANEHON MHTEPNONALMK M 3KCTpanonAuMK kybudyeckoro cnnaiHa wenone3yeTca ANA "3anonHeHusA Benkix NATeH” cpegu OTCYTCTBYHLLMX 3Ha4eHNi, a
TakKke ANA COCTABNEHWA MPOTHO30B HA OCHOBE [3HHBIX BPEMEHHEIX PANOB. B wTore, nonydyeHHas MoAene MONET NPUMEHATECA KaK JANA WHTEPMONALMM
OTCYTCTBYHWLMX TOUEK AAHHLIX BO BPEMEHHOM PAAE (HanpuMmep, B KPUBOA YPOMAAHOCTH, NPOLUEHTHBIX CTABKAX, MAKPOIKOHOMUYECKAX NepeMEHHBIX. TAKWX Kak
VHEKC WHOBINALWK, LEHbl HA TOBaphl MMM PbIHOYHAA [OXOAHOCTL), Tak W ANA 3KCTPanonAuMM 33 Npefentl KOHKPETHOro W3BECTHOrD pAAa, 4T0 NOME3Ho npn
COCTEBMEHUN NPOrHO30B.
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6.0 4.32% WHTepnonnpoeate 2 0.2500 4.47T% 440%
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7.0 4.38% HTepnonupoBEaTE 4 1.0000 4.39%
75 441%  MuTepnonupoBats 5 20000 4.13% EUCE
8.0 4.44% WHTepnonuposate 6 3.0000 4.16%
8.5 4.47% HTepnonupoBEaTE 7 5.0000 4.26% 400 % - - - - - - - - - 5
9.0 450%  VMwrepnonnpoBate ] 7.0000  4.38% o 5 10 15 20 25 30 35 40 45 50
9.5 4.53% WHTepnonnpogate 9 10.0000 4.56%
10.0 4.56% HTepnonupoBaTe 10 20.0000 488%
10.5 4.59% HTepnonnpoEaTe il 30.0000 4.84%
1.0 4.61% WHTepnonnpoeate
14 4.64% MHTepnonupoBats
12.0 4.66% HTepnonupoBEaTe

Figure 3.23 — Spline Forecast Results
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4. ONMTUMN3ALIUA

his chapter looks at the optimization process and methodologies in more detail in

connection with using Risk Simulator. These methodologies include the use of

continuous versus discrete integer optimization, as well as static versus dynamic and
stochastic optimizations.

4.1 Merososoruu OoITHMH3ALIHA

Many algorithms exist to run optimization, and many different procedures exist when
optimization is coupled with Monte Carlo simulation. In Risk Simulator, there are three distinct
optimization procedures and optimization types as well as different decision variable types. For
instance, Risk Simulator can handle Continuous Decision Variables (1.2535, 0.2215, etc.) as well
as Integers Decision Variables (1, 2, 3, 4, etc.), Binary Decision Vatiables (1 and 0 for go and
no-go decisions), and Mixed Decision Variables (both integers and continuous variables). On
top of that, Risk Simulator can handle Linear Optimization (i.e., when both the objective and
constraints are all linear equations and functions) as well as Nonlinear Optimizations (i.e., when
the objective and constraints are a mixture of linear and nonlinear functions and equations).

As far as the optimization process is concerned, Risk Simulator can be used to run a Discrete
Optimization, that is, an optimization that is run on a discrete or static model, where no
simulations are run. In other words, all the inputs in the model are static and unchanging. This
optimization type is applicable when the model is assumed to be known and no uncertainties
exist. Also, a discrete optimization can be first run to determine the optimal portfolio and its
corresponding optimal allocation of decision variables before more advanced optimization
procedures are applied. For instance, before running a stochastic optimization problem, a
discrete optimization is first run to determine if there exist solutions to the optimization
problem before a more protracted analysis is performed.

Next, Dynamic Optimization is applied when Monte Catlo simulation is used together with
optimization. Another name for such a procedure is Simulation-Optimization. That is, a
simulation is first run, then the results of the simulation are then applied in the Excel model,
and then an optimization is applied to the simulated values. In other words, a simulation is run
for N trials, and then an optimization process is run for M iterations until the optimal results are
obtained or an infeasible set is found. That is, using Risk Simulator’s optimization module, you
can choose which forecast and assumption statistics to use and replace in the model after the
simulation is run. Then, these forecast statistics can be applied in the optimization process. This
approach is useful when you have a large model with many interacting assumptions and
forecasts, and when some of the forecast statistics are required in the optimization. For
example, if the standard deviation of an assumption or forecast is required in the optimization
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model (e.g., computing the Sharpe ratio in asset allocation and optimization problems where we
have mean divided by standard deviation of the portfolio), then this approach should be used.

The Stochastic Optimization process, in contrast, is similar to the dynamic optimization
procedure with the exception that the entire dynamic optimization process is repeated T times.
That is, a simulation with N trials is run, and then an optimization is run with M iterations to
obtain the optimal results. Then the process is replicated T' times. The results will be a forecast
chart of each decision variable with T values. In other words, a simulation is run and the
forecast or assumption statistics are used in the optimization model to find the optimal
allocation of decision variables. Then, another simulation is run, generating different forecast
statistics, and these new updated values are then optimized, and so forth. Hence, the final
decision variables will each have their own forecast chart, indicating the range of the optimal
decision variables. For instance, instead of obtaining single-point estimates in the dynamic
optimization procedure, you can now obtain a distribution of the decision variables and, hence,
a range of optimal values for each decision variable, also known as a stochastic optimization.

Finally, an Efficient Frontier optimization procedure applies the concepts of marginal
increments and shadow pricing in optimization. That is, what would happen to the results of
the optimization if one of the constraints were trelaxed slightly? Say, for instance, the budget
constraint is set at $1 million. What would happen to the portfolio’s outcome and optimal
decisions if the constraint were now $1.5 million, or $2 million, and so forth? This is the
concept of the Markowitz efficient frontiers in investment finance, whereby one can determine
what additional returns the portfolio will generate if the portfolio standard deviation is allowed
to increase slightly. This process is similar to the dynamic optimization process with the
exception that one of the constraints is allowed to change, and with each change, the simulation
and optimization process is run. This process is best applied manually using Risk Simulator.
That is, run a dynamic or stochastic optimization, then rerun another optimization with a
constraint, and repeat that procedure several times. This manual process is important because
by changing the constraint, the analyst can determine if the results are similar or different, and,
hence, whether it is worthy of any additional analysis, or the analyst can determine how far a
marginal increase in the constraint should be to obtain a significant change in the objective and
decision variables.

One item is worthy of consideration. There exist other software products that supposedly
perform stochastic optimization but, in fact, they do not. For instance, after a simulation is run,
then one iteration of the optimization process is generated, and then another simulation is run,
then the second optimization iteration is generated and so forth. This approach is simply a
waste of time and resources. That is, in optimization, the model is put through a rigorous set of
algorithms, where multiple iterations (ranging from several to thousands of iterations) are
required to obtain the optimal results. Hence, generating one iteration at a time is a waste of
time and resources. The same portfolio can be solved using Risk Simulator in under a minute as
compared to multiple hours using such a backward approach. Also, such a simulation-
optimization approach will typically yield bad results, and it is not a stochastic optimization
approach. Be extremely careful of such methodologies when applying optimization to your
models.

The next two sections provide examples of optimization problems. One uses continuous
decision variables while the other uses discrete integer decision variables. In either model, you
can apply discrete optimization, dynamic optimization, stochastic optimization, or even the
efficient frontiers with shadow pricing. Any of these approaches can be used for these two
examples. Therefore, for simplicity, only the model setup is illustrated and it is up to the user to
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decide which optimization process to run. Also, the continuous model uses the nonlinear
optimization approach (because the portfolio risk computed is a nonlinear function, and the
objective is a nonlinear function of portfolio returns divided by portfolio risks) and integer
optimization is an example of a linear optimization model (its objective and all of its constraints
are linear). Therefore, these two examples encapsulate all of the procedures aforementioned.

4.2 Onruamu3anmAa ¢ HempEPHIBHBIMH
HEPEMEHHBIMH PEIITCHUH

Figure 4.1 illustrates the sample continuous optimization model. The example here uses the
Continuous Optimization file found either on the start menu at Start | Real Options Valuation
| Risk Simulator | Examples or accessed directly through Risk Simulator | Example Models.
In this example, there are 10 distinct asset classes (e.g., different types of mutual funds, stocks,
or assets) where the idea is to most efficiently and effectively allocate the portfolio holdings
such that the best bang for the buck is obtained; that is, to generate the best portfolio returns
possible given the risks inherent in each asset class. To truly understand the concept of
optimization, we will have to delve deeply into this sample model to see how the optimization
process can best be applied.

As mentioned, the model shows the 10 asset classes each with its own set of annualized returns
and annualized volatilities. These return and risk measures are annualized values such that they
can be consistently compared across different asset classes. Returns are computed using the
geometric average of the relative returns, while the risks are computed using the logarithmic
relative stock returns approach.

EN [y

CoomHoweHue
OKYNaemocmu u pucka

MOAENb ONTUMN3ALIMKM PACNPEOENEHNA AKTUBOB

m " Pawxupoeanue PanxupoBaH

Hoe Hoe Coor

OkynaemocTh Puck Bec

OnucaHue knacca OKYNAaeMOCTH He pHCKa
E TOJOEBOM EONaTHNbH pacnpefeneH obazaTentHoe  obAzaTencHoe  okynaemocTH -

AKTHEOE (ebicoKkan- (HMzKHA-

MCYUCTIEHHH OCTH uA pacnp pacnp W pucKa Hmakas) BhICOKHH)
Knacc aktneoe 1 10.54% 12.36% 10.00% 5.00% 35.00% 0.8524 9 2
Knacc aktueoe 2 11.25% 16.23% 10.00% 5.00% 35.00% 0.6929 7 8
Knacc aktneos 3 11.84% 15.64% 10.00% 5.00% 35.00% 0.7570 6 7
Knacc aktueoe 4 10.64% 12.35% 10.00% 5.00% 35.00% 0.8615 8 1
Knacc aktneos 5 13.25% 13.28% 10.00% 5.00% 35.00% 0.9977 5 4
Knacc aktueoe 6 14.21% 14.39% 10.00% 5.00% 35.00% 0.9875 3 6
Knacc aktneos 7 15.53% 14.25% 10.00% 5.00% 35.00% 1.0898 1 5
Knacc aktveoe 8 14.95% 16.44% 10.00% 5.00% 35.00% 0.9094 2 9
Knacc aktueoe 9 14.16% 16.50% 10.00% 5.00% 35.00% 0.8584 4 10
Knacc aktueoe 10 10.06% 12.50% 10.00% 5.00% 35.00% 0.8045 10 3

Beck nopmarens 12.6419% 4.58% 100.00%

2.7596

Figure 4.1 — Continuous Optimization Model

Referring to Figure 4.1, column E (Allocation Weights) holds the decision variables, which are
the variables that need to be tweaked and tested such that the total weight is constrained at
100% (cell E17). Typically, to start the optimization, we set these cells to a uniform value, where
in this case, cells E6 to E15 are set at 10% each. In addition, each decision variable may have
specific restrictions in its allowed range. In this example, the lower and upper allocations
allowed are 5% and 35%, as seen in columns F and G. This means that each asset class may
have its own allocation boundaries. Next, column H shows the return to risk ratio, which is
simply the return percentage divided by the risk percentage, where the higher this value, the
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higher the bang for the buck. Columns I through L show the individual asset class rankings by
returns, risk, return to risk ratio, and allocation. In other words, these rankings show at a glance
which asset class has the lowest risk, or the highest return, and so forth.

The portfolio’s total returns in cell C17 is SUMPRODUCT(C6:C15, E6:E15), that is, the sum
of the allocation weights multiplied by the annualized returns for each asset class. In other
words, we have R, =w,R, +wzR; + @R, + wyRy, where Rp is the return on the

portfolio, R4pcp are the individual returns on the projects, and @4pcp are the respective
weights, or capital allocation, across each project.

In addition, the portfolio’s diversified risk in cell D17 is computed by taking:
o =\/Za)i20i2 +
i1

Here, p;; are the respective cross-correlations between the asset classes—hence, if the cross-
correlations are negative, there are risk diversification effects, and the portfolio risk decreases.
However, to simplify the computations here, we assume zero correlations among the asset
classes through this portfolio risk computation, but assume the correlations when applying
simulation on the returns as will be seen later. Therefore, instead of applying static correlations
among these different asset returns, we apply the correlations in the simulation assumptions
themselves, creating a more dynamic relationship among the simulated return values.

n m
Za)ia)jpi’jciaj .
i1 ja

Finally, the return to risk ratio, or Sharpe ratio, is computed for the portfolio. This value is seen
in cell C18, and represents the objective to be maximized in this optimization exercise. To
summarize, we have the following specifications in this example model:

Olbyective: Mascimize Return to Risk Ratio (C18)
Decision V ariables: Allocation Weights (E6:E15)

Restrictions on Decision | ariables: Mininomm and Maxcimum Required (F6:G15)
Constraints: Total Allocation W eights Sun to 100% (E17)

Open the example file and start a new profile by clicking on Risk Simulator | New Profile and
provide it a name.

e The first step in optimization is to set the decision variables. Select cell 26, set the first
decision vatiable (Risk Sinuulator | Optinization | Set Decision), and click on the link icon
to select the name cell (B0), as well as the lower bound and upper bound values at cells
F6 and G6. Then, using Risk Simulator’s copy, copy this cell E6 decision variable and
paste it to the remaining cells in F£7 70 I£75.

e The second step in optimization is to set the constraint. There is only one constraint
here, that is, the total allocation in the portfolio must sum to 100%. So, click on Risk
Sinmtlator | Optimization | Constraits. .. and select ADD to add a new constraint. Then,
select the cell £77 and make it egzal (=) to 100%. Click OK when done.

e The final step in optimization is to set the objective function and start the optimization
by selecting the objective cell C78 and Risk Sinulator | Optinization | Run Optinzzation

103 |Page



RISK SIMULATOR

and then selecting the optimization of choice (S7atic Optinuization, Dynamic Optimization,
ot Stochastic Optimization). To get started, select Static Optinuzation. Check to make sure
the objective cell is set for C78 and select Maxizize. You can now review the decision
variables and constraints if required, or click OK to run the static optimization.

Once the optimization is complete, you may select Revert to revert back to the original values
of the decision variables as well as the objective, or select Replace to apply the optimized
decision variables. Typically, Replace is chosen after the optimization is done.

Figure 4.2 shows the screen shots of these procedural steps. You can add simulation
assumptions on the model’s returns and 1isk (columns C and D) and apply the dynamic
optimization and stochastic optimization for additional practice.
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-
E CI'IFI-EBICE no ONTUMKMZ3UMKA ﬁ

ONTUMUSELMA WCNONBIYETCA ANA PACNPERENEHUA PECYPCOB, KOS
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Figure 4.2 — Running Continuous Optimization in Risk Simulator

Results The optimization’s final results are shown in Figure 4.3, where the optimal allocation of assets

Interpretation for the portfolio is seen in cells E6:E15. That is, given the restrictions of each asset fluctuating
between 5% and 35%, and where the sum of the allocation must equal 100%, the allocation
that maximizes the return to risk ratio can be identified from the data provided in Figure 4.3.

A few important things have to be noted when reviewing the results and optimization
procedures performed thus far:

e The correct way to run the optimization is to maximize the bang for the buck, or
returns to risk Sharpe ratio, as we have done.

e If instead we maximized the total portfolio returns, the optimal allocation result is
trivial and does not require optimization to obtain. That is, simply allocate 5% (the
minimum allowed) to the lowest eight assets, 35% (the maximum allowed) to the
highest returning asset, and the remaining (25%) to the second-best returns asset.
Optimization is not required. However, when allocating the portfolio this way, the risk
is a lot higher as compared to when maximizing the returns to risk ratio, although the
portfolio returns by themselves are higher.

e In contrast, one can minimize the total portfolio tisk, but the returns will now be less.
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Table 4.1 illustrates the results from the three different objectives being optimized and shows
that the best approach is to maximize the returns to risk ratio, that is, for the same amount of
risk, this allocation provides the highest amount of return. Conversely, for the same amount of
return, this allocation provides the lowest amount of risk possible. This approach of bang for
the buck, or returns to risk ratio, is the cornerstone of the Markowitz efficient frontier in
modern portfolio theory. That is, if we constrained the total portfolio risk level and successively
increased it over time, we will obtain several efficient portfolio allocations for different risk
characteristics. Thus, different efficient portfolio allocations can be obtained for different
individuals with different risk preferences.

Portfolio Portfolio Portfolio

Returns Risk Returns — to
Objective Risk Ratio
Maximize Returns to Risk Ratio 12.69% 4.52% 2.8091
Maximize Returns 13.97% 6.77% 2.0636
Minimize Risk 12.38% 4.46% 2.7754

Table 4.1 — Optimization Results

MOAENbL ONTUMU3ALUMN PACMPEOENEHNA AKTUBOB

OkynaemocTb Puck Bec MuHumansHoe MakcumancHoe CooTHoweHHe

OnucaHWe knacca aKTMEOB EFOAOEOM  BONaTMNBH pacnpefenceH obAzaTencHoe oDA3aTENEHOE  OKYNaeMocTH
HCHHCNEHHH OCTH uAa pacnpegdencHie pacnpegeneHue H pHCKa
Knacc aktueoe 1 10.54% 12.36% 11.09% 5.00% 35.00% 0.8524
Knacc akTueoe 2 11.25% 16.23% 5.86% 5.00% 35.00% 0.6929
Knacc aktueoe 3 11.84% 15.64% 7.78% 5.00% 35.00% 0.7570
Knacc aktueoe 4 10.64% 12.35% 11.23% 5.00% 35.00% 0.8615
Knacc aktueoe 5 13.25% 13.28% 12.09% 5.00% 35.00% 0.9977
Knacc aktueoe 6 14.21% 14.39% 11.04% 5.00% 35.00% 0.9875
Knacc aktusoe 7 16.63% 14.25% 12.30% 5.00% 35.00% 1.0898
Knacc aktueoe 8 14.95% 16.44% 5.90% 5.00% 35.00% 0.9094
Knacc aktueoe 9 14.16% 16.60% 8.37% 5.00% 35.00% 0.8584
Knacc aktueoe 10 10.06% 12.60% 10.35% 5.00% 35.00% 0.8045

Bec nopmeens 12.6919% 4.52%

CoomHoweHue OKymaeMocmu u pucka 2.8091

Figure 4.3 — Continuous Optimization Results

4.3 Onramu3anmAa ¢ AHCKPETHBIMH
LT€AOYHCACHHBIMH ITEPEMEHHBIMH

Sometimes, the decision variables are not continuous but are discrete integers (e.g,, 0 and 1). We
can use optimization with discrete integer variables as on-off switches or go/no-go decisions.
Figure 4.4 illustrates a project selection model with 12 projects listed. The example here uses the
Discrete Optimization file found either on the start menu at S7ar# | Real Options 1 aluation | Risk
Sinmlator | Examples or accessed directly through Risk Simulator | Example Models. Each
project has its own returns (ENPV and NPV, for expanded net present value and net present
value—the ENPV is simply the NPV plus any strategic real options values), costs of
implementation, tisks, and so forth. If required, this model can be modified to include required
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full-time equivalences (FTE) and other resources of various functions, and additional
constraints can be set on these additional resources. The inputs into this model are typically
linked from other spreadsheet models. For instance, each project will have its own discounted
cash flow or returns on investment model. The application here is to maximize the portfolio’s
Sharpe ratio subject to some budget allocation. Many other versions of this model can be
created, for instance, maximizing the portfolio returns or minimizing the risks, or adding
constraints where the total number of projects chosen cannot exceed 6, and so forth and so on.
All of these items can be run using this existing model.

Open the example file and start a new profile by clicking on Risk Sinulator | New Profile and
provide it a name.

The first step in optimization is to set up the decision variables. Set the first decision
variable by selecting cell J4, select Risk Summulator | Optimization | Set Decision, click on
the link icon to select the name cell (B4), and select the Binary variable. Then, using
Risk Sinmilator’s copy, copy this cell 4 decision variable and paste the decision variable to
the remaining cells in /5 7 [75. This is the best method if you have only several
decision variables and you can name each decision variable with a unique name for
identification later.

The second step in optimization is to set the constraint. There are two constraints
here: the total budget allocation in the portfolio must be less than $5,000 and the total
number of projects must not exceed 6. So, click on Risk Sinulator | Optimization |
Constraints. .. and select ADD to add a new constraint. Then, select the cell D77 and
make it less than or equal to (<=) 5000. Repeat by setting cell /77 <= 6.

The final step in optimization is to set the objective function and start the optimization
by selecting cell C79 and Risk Simmlator | Optimization | Set Objective. Then run the
optimization using Risk Sumulator | Optimization | Run Optimization and selecting the
optimization of choice (Szatic Optinuzation, Dynamic  Optimization, ot Stochastic
Optimization). To get started, select Szazic Optimization. Check to make sure that the
objective cell is either he Sharpe ratio ot portfolio returns to tisk ratio and select Maximize.
You can now review the decision variables and constraints if required, or click OK to
run the static optimization.

Figure 4.5 shows the screen shots of these procedural steps. You can add simulation
assumptions on the model’s ENPV and risk (columns C and E), and apply the dynamic
optimization and stochastic optimization for additional practice.
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BbIEOP ONTUMANBHOMO NPOEKTA ANA NOPT®ENS C 3®®EKTUBHOWN MPAHWULEN, HA KOTOPYIO PACNPOC TPAHAKOTCH OMPAHWYEHKWSA

Oxudaeman

npoeKkmsi Hucman mexyiasn 3ampamei Puck § Puck % mgxuw:r:l’:i Mnoexc Bsibop
cmouMocme doxodnocmu
(ENPV) pucka
Mpoexm 1 §458.00 §1,732.44 $54.96 12.00% 833 1.26 1.0000
Mpoexkm 2 $1,954.00 $850.00 | $7,01402 | 98.00% 1.02 327 1.0000
IMpoexm 3 $1,599.00 $1,845.00 | $1,551.03 | 97.00% 1.03 187 1.0000
IMpoekm 4 $2,251.00 $1,645.00 | $1,01295 | 4500% 222 237 1.0000
IMpoexm & $849.00 $458.00 | §92541 | 106.00% 092 285 1.0000
lpoexkm 6 $758.00 $52.00 | $560.92 74.00% 1.35 15.58 1.0000
Mpoexm 7 $2,845.00 $758.00 | $5633.10 | 198.00% 0.57 4.75 1.0000
lNpoexm 8 $1,235.00 3115.00 | $926.25 75.00% 1.33 11.74 1.0000
MNpoexm 9 $1,945.00 $125.00 | §2,100.60 | 108.00% 0.93 16.56 1.0000
Mpoexm 10 $2,250.00 $458.00 | $1,912.50 | 85.00% 1.18 591 1.0000
Mpoexm 11 $549.00 $45.00 | $26352 | 48.00% 2.08 13.20 1.0000
Mpoexm 12 $525.00 $105.00 | $309.75 | 58.00% 1.69 6.00 1.0000
Beezo §17,218.00 §8,197.44  §7,007  40.70%
Uenk: MAKC < =§5000 <=6
Koagppuyuenm La 2.4573

ENPV - 3mo oxudaeman yucmas mexywas cmoumocms (NPV) kaxdoll unsecmuyuu unu npoekma, mozda kak nod sampamamu nodpasymesaromes obujue sampamst

MpU UHBECMUPOSAaHUL, & PUCK - 3MO Koabebuluenm sapuamusHocmu oxudaemoll yucmoll mexkywel cmouMocmu npoekma.

HsmeHume npoghuns Ha o0uH us NpumMepos sghghexmusHol apaHuLb! ONs 8LIMONHEHUS aHanusa sghghexmusHol apaHuUb!.

Figure 4.4 — Discrete Integer Optimization Model
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Figure 4.5 — Running Discrete Integer Optimization in Risk Simulator

Figure 4.6 shows a sample optimal selection of projects that maximizes the Sharpe ratio. In
contrast, one can always maximize total revenues, but, as before, this is a trivial process and
simply involves choosing the highest returning project and going down the list until you run out
of money or exceed the budget constraint. Doing so will yield theoretically undesirable projects
as the highest yielding projects typically hold higher risks. Now, if desired, you can replicate the
optimization using a stochastic or dynamic optimization by adding assumptions in the ENPV
and/or cost, and/or risk values.

For additional hands-on examples of optimization in action, see the case study in Chapter 11
on Integrated Risk Management in the book, Real Options Analysis: Tools and Techniques,
Second Edition (Wiley Finance, 2010), by Dr. Johnathan Mun. That case study illustrates how an
efficient frontier can be generated and how forecasting, simulation, optimization, and real
options can be combined into a seamless analytical process.
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Project 2
Project 3
Project 4
Project 5
Project 6
Project 7
Project 8
Project9
Project 10
Project 11
Project 12

Sharpe Ratio
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[ Optimization Complete

ENPV Cost Risk $ R P Proleny Selection
545600 | st73244| s3496 [ 1200% | 633 1.26 7.0000
5195400 | 565900 | 6191492 | 9800% | 102 327 0.0000 Optimization Result
$1,598.00 | §164500 | 6155103 | 8700% | 103 1.87 0.0060 4
$2251.00 | $1,64500 | §1.01295 | 4500% | 222 237 7.0000 o
5845.00 | S45600 | $92541 | 109.00% | 092 265 0.0000 ;
§758.00 $5200 | $56092 | 7400% | 135 15.58 1.0000 3
$284500 | 575600 | §5633.10 | 198.00% | 051 475 0.0000
$123500 | 11500 | $92625 | 7500% | 133 11.74 7.0000 g *°
5194500 | 512500 | 5210060 | 106.00% | 093 16.56 0.0000 E 2
5225000 | 545500 | §1.91250 | 8500% | 118 591 0.0000 .
5545.00 54500 | 526352 | 4600% | 208 3.20 1.0000
552500 | 10500 | $30975 | 09.00% | 169 6.00 1.0000 1
S577600  $369444  §1539  2664% L
5%3 =50 =6 Y37 id67¢ S AT 121316151617 12182021 22 23 24 5 2R 21 28
- Humber of lterations

ENPYV is the expected NPV of each credit line or project, while Cost can be the total cost of
administration as well as required capital hoidings to cover the credit line, and Risk is the
Coefficient of Variation of the credit line's ENPV.

Problem Parameters:

Number of variables is
Number of functions is
objective function will

Functions:

12

be maximized

starting values

Function Initial Lower Upper
No. Name Status Type value Bound Bound
1 5 o83 2.4573
2 6 RNGE 3197.4371 ~1,000000E+010  D.0O00000E+000
3 G =ees  RNGE 6.0000] -1.000000E+010  0.00DDO0E+000
variables:
Variable Initial Lower Upper
No. Name status value Bound sound

Optimal values have been found. Do you wish to replace the esisling decision wariables with the optimized valies of

revert to the oiiginal inputs?

(S

Figure 4.6 — Optimal Selection of Projects That Maximizes the Sharpe Ratio

4.4 KpuBas DgpghbeKTHBHOCTH H AOITOAHUTEABHBIE
HACTPOHKH OIITHMH3ALHH

The middle graphic in Figure 4.5 shows the constraints set for the example optimization.
Within this function, if you click on the Efficient Frontier button after you have set some
constraints, you can make the constraints changing. That is, each of the constraints can be
created to step through between some maximum and minimum value. As an example, the
constraint in cell /77 <= 6 can be set to run between 4 and 8 (Figure 4.7). Thus, five optimizations
will be run, each with the following constraints: J17 <=4, J17 <=5, J17 <= 6, J17 <=7, and
J17 <= 8. The optimal results will then be plotted as an efficient frontier and the report will be
generated (Figure 4.8). Specifically, here are the steps required to create a changing constraint:

In an optimization model (e, a model with Objective, Decision Variables, and
Constraints already set up), click on Risk Simulator | Optinization | Constraints and click
on Efficient Frontier.

Select the constraint you want to change or step (e.g., J17), enter in the parameters for
Min, Max, and S7ep Size (Figure 4.7), click ADD, and then click OK and OK again. You
should deselect D17 <= 5000 constraint before running.

Run Optimization as usual (Risk Simulator | Optinization | Run Optinization). You can
choose static, dynamic, ot stochastic.

The results will be shown as a user interface (Figure 4.8). Click on Create Report to
generate a report worksheet with all the details of the optimization runs.

10| Page



RISK SIMULATOR

-
JperTMEHAA rpaHMLLA

Tekylumue oTpEHIUSHIA

[J5D$17 <= 5000
5517 <=6

Opfizents

g

—MNapameTpi

PA3MER
MIAH |4

LATA

B makc fs

Mzmeketue orparudeHmi

(2] $J417 <= MIN 4, MAX 8, STEP 1

MameHuTs

Yoanute

0

Ommena

dafd]

—

Figure 4.7 — Generating Changing Constraints in an Efficient Frontier

Efficient Frontier Optimization Complete =)
Problem Parameters:
Number of variables 12
Number of functions 3 ~ -
Objective function will be Maximized 38 ETOCIe R Ty
STEP1, D17 <= 5000, J17 <=4 375
= 37
Functions
E 385
Starting Values Final Resuits =3
Z 38
&l
355
Function Lower Upper Function
No. Name Status Type Initial Value Bound Bound No. Name [nitial Value Final Value 35
1 G 0BJ 245726 1 G 2 45726 346137
s . _ 345
2 G - RNGE 3197.43710 1E+10 0 2 G 3197.43710 -1472.56292 g T 3 5 5 E 75 2
3 G RNGE 8.00000 -1E+10 0 3 G 8.00000 0.00000 Constraints
Variables T LhC ot s =
s::Step: 1%%* Constraints are: o
Starting Values Final Results §“,‘§i; {; imn Tl
Problem Parameters:
Number of variables is 12
Number of functions is_ 3
Variable Initial fron Uppiar Variable |objective function will be Maximized
Mo, Name Status Value Bound Bound ho. Name [nitial Value Final Value
starting val
1 X uL 1.00000 0 1 1 X 1.00000 1.00000 FeREE TS EEIAR | e
74 X uL 1.00000 0 1 2 X 1.00000 000000 Function Initial Lower upper
3 x UL 1.00000 0 1 3 x 100000 0.00000 s i i il Rt i
4 X uL 1.00000 0 1 4 X 1.00000 1.00000 = [ 081 2.4573
s X UL 100000 0 1 5 X 1.00000 0.00000 Fl & RNGE 3197.4371 -1.000000E+010  0.0Q00000E+00Q
6 X uL 1.00000 0 1 6 X 1.00000 0.00000 ‘ -
7 X uL 1.00000 0 1 I X 1.00000 0.00000 Optimal values have been found. Do you wish to replace the existing deci variables with the optimi; or
8 b UL 1.00000 0 1 & X 100000  0.00000 | | reverttothe original inputs?
g X uL 1.00000 0 1 9 X 1.00000 0.00000
10 X UL 100000 0 1 10 X 100000 0.00000
" X uL 1.00000 0 1 Ll X 1.00000 1.00000
12 X uL 1.00000 0 1 12 X 1.00000 1.00000
Objective  Binding Super Infeas Norm of Hessian  Step Degen
No. Function Constrs Basics Constr  Red. Grad  Cond Mo. Size Step
1 320543710 0 12 2 057590 1 0
2 3.55285 0 " 1 0.28146 1 1
3 288211 0 10 1 0.34697 1 0061

Figure 4.8 — Efficient Frontier Results
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4.5 Croxacruyeckadg OITHMH3AL[HA

This example illustrates the application of stochastic optimization using a sample model with
four asset classes each with different risk and return characteristics. The idea here is to find the
best portfolio allocation such that the portfolio’s bang for the buck, or returns to risk ratio, is
maximized. That is, the goal is to allocate 100% of an individual’s investment among several
different asset classes (e.g., different types of mutual funds or investment styles: growth, value,
aggressive growth, income, global, index, contrarian, momentum, etc.). This model is different
from others in that there exists several simulation assumptions (tisk and return values for each
asset in columns C and D), as seen in Figure 4.9.

A simulation is run, then optimization is executed, and the entire process is repeated multiple
times to obtain distributions of each decision vatiable. The entire analysis can be automated
using Stochastic Optimization. To run an optimization, several key specifications on the model
have to be identified first:

Obyjective: Maxcimize Return to Risk Ratio (C12)

Decision V ariables: Allocation Weights (E6:E9)

Restrictions on Decision 1V ariables: Mininium and Maxcinum Required (F6:G9)

Constraints: Portfolio Total Allocation Weights 100%
(E11 is set to 100%)

Simmnlation Assumptions: Return and Risk V alnes (C6:D9)

The model shows the vatious asset classes. Each asset class has its own set of annualized
returns and annualized volatilities. These return and risk measures are annualized values such
that they can be consistently compared across different asset classes. Returns are computed
using the geometric average of the relative returns, while the risks are computed using the
logarithmic relative stock returns approach.

In Figure 4.9, column E (Allocation Weights) holds the decision vatiables, which are the
variables that need to be tweaked and tested such that the total weight is constrained at 100%
(cell E11). Typically, to start the optimization, we set these cells to a uniform value. In this case,
cells E6 to E9 are set at 25% each. In addition, each decision variable may have specific
restrictions in its allowed range. In this example, the lower and upper allocations allowed are
10% and 40%, as seen in columns F and G. This setting means that each asset class may have
its own allocation boundaries.

Next, column H shows the return to risk ratio, which is simply the return percentage divided by
the risk percentage for each asset, where the higher this value, the higher the bang for the buck.
The remaining parts of the model show the individual asset class rankings by returns, risk,
return to risk ratio, and allocation. In other words, these rankings show at a glance which asset
class has the lowest tisk, or the highest return, and so forth.
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LI I

Onucanue knacca
AKTHEOE

B c D E F G H

MOJEJNb ONTUMW3ALWW PACNPEAENEHWNA AKTUBOB

Panxupoeanune
OkynaemocTb Puck Bec MunumancHoe Makcumanbioe CooTHoweHue OKYNACMOCTH
E FOAOEOM BONaTWNbLH pacnpegeneH obszaTenbHoe oBAzaTenbHoe OKynaemocTH T:hICDKaH
MCHMCNEHHN ocTH ua pacnpeg pacnpen W pucka Hugnan}-
Axtne 1 10.62% 12.33% 25.00% 10.00% 40.00% 0.8611 2
Axtne 2 11.19% 16.15% 25.00% 10.00% 40.00% 0.6926 1
Axtne 3 10.54% 15.92% 25.00% 10.00% 40.00% 0.6619 4
Axtne 4 10.58% 12.47% 25.00% 10.00% 40.00% 0.8483 3

Bece nopmdpens 10.7314% 7.17% 100.00%
CoomHoweHue
OKynmaemMocmu u

1.4972

Figure 4.9 — Asset Allocation Model Ready for Stochastic Optimization

To run this model, simply click on Risk Sinulator | Optimization | Run Optinmization. Alternatively,
and for practice, you can set up the model using the following steps illustrated in Figure 4.10:

1.

Start a new profile (Risé Simulator | New Profily). For stochastic optimization, set
distributional assumptions on the risk and returns for each asset class. That is, select cell
Co, set an assumption (Risk Simulator | Set Input Assumption), and designate your own
assumption as required. Repeat for cells C7 to D9.

Select cell E6, and define the decision variable (Ris& Sinulator | Optinization | Set Decision ot
click on the Sez Decision D icon) and make it a Continuous Vatiable. Then link the decision
vatiable’s name and minimum/maximum required to the relevant cells (B6, [6, G6).

Then use Risk Simulator’s copy on cell E6, select cells 27 to 9, and use Risk Simulator’s
paste (Risk Simmlator | Copy Parameter and Risk Simmnlator | Paste Parameter or use the copy
and paste icons). Remember not to use Excel’s regular copy and paste functions.

Next, set up the optimization’s constraints by selecting Risk Simulator | Optinuzation |
Constraints, selecting ADD, and selecting the cell 77 and making it equal 700% (total
allocation, and do not forget the % sign).

Select cell C72, the objective to be maximized, and make it the objective: Risk Sumulator
Optimization | Set Objective ot click on the O icon. Run the optimization by going to Risk
Simmulator | Optinization | Run Optimization. Review the different tabs to make sure that all
the required inputs in steps 2 and 3 are correct. Select Stochastic Optimization and let it run
for 500 trials repeated 20 times. Click OK when the simulation completes and a detailed
stochastic optimization report will be generated along with forecast charts of the decision
variables.
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Figure 4.10 — Setting Up the Stochastic Optimization Problem

114|Page



Results
Interpretation

Notes

RISK SIMULATOR

Stochastic optimization is performed when a simulation is run first and then the optimization is
run. Then the whole analysis is repeated multiple times. As shown in Figure 4.11 for the
example optimization, the result is a distribution of each decision variable rather than a single-
point estimate. This means that instead of saying you should invest 30.69% in Asset 1, the
results show that the optimal decision is to invest between 30.35% and 31.04% as long as the
total portfolio sums to 100%. This way, the results provide management or decision makers a
range of flexibility in the optimal decisions while accounting for the risks and uncertainties in
the inputs.

Super Speed Simulation with Optimization. You can also run stochastic optimization with
super speed simulation. To do this, first reset the optimization by resetting all four decision
variables back to 25%. Next, Run Optimization, click on the Advanced button (Figure 4.10),
and select the checkbox for Run Super Speed Simulation. Then, in the run optimization user
interface, select Stochastic Optimization on the Method tab and set it to run 500 trials and 20
optimization runs, and click OK. This approach will integrate the super speed simulation with
optimization. Notice how much faster the stochastic optimization runs. You can now quickly
rerun the optimization with a higher number of simulation trials.

Simulation Statistics for Stochastic and Dynamic Optimization. Notice that if there are
input simulation assumptions in the optimization model (ie., these input assumptions are
required in order to run the dynamic or stochastic optimization routines), the Statistics tab is
now populated in the Run Optimization user interface. You can select from the drop-down list
the statistics you want, such as average, standard deviation, coefficient of variation, conditional
mean, conditional variance, a specific percentile, and so forth. This means that if you run a
stochastic optimization, a simulation of thousands of trials will first run, then the selected
statistic will be computed and this value will be temporarily placed in the simulation assumption
cell, then an optimization will be run based on this statistic, and then the entire process is
repeated multiple times. This method is important and useful for banking applications in
computing conditional Value at Risk, or conditional VaR.
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Figure 4.11 — Simulated Results from the Stochastic Optimization Approach

116 |Page



Theory

RISK SIMULATOR

5. AHAIIMTUMECKME
MHCTPYMEHTDBI RISK SIMULATOR

his chapter covers Risk Simulator’s analytical tools, providing detailed discussions of
I the applicability of each tool and through example applications, complete with step-
by-step illustrations. These tools are very valuable to analysts working in the realm of

risk analysis.

5.1 Topaaso u HucTtpyMeHTHI YyBCTBHTEABHOCTH B
MOAEAHPOBAHHH

Tornado analysis is a powerful simulation tool that captures the static impacts of each variable
on the outcome of the model. That is, the tool automatically perturbs each variable in the
model a preset amount, captures the fluctuation on the model’s forecast or final result, and lists
the resulting perturbations ranked from the most significant to the least. Figures 5.1 through 5.6
illustrate the application of a tornado analysis. For instance, Figure 5.1 is a sample discounted
cash flow model where the input assumptions in the model are shown. The question is what
are the critical success drivers that affect the model’s output the most? That is, what really
drives the net present value of $96.63 or which input variable impacts this value the most?

The tornado chart tool can be accessed through Risk Simulator | Tools | Tornado Analysis. To
follow along the first example, open the Tornado and Sensitivity Charts (Linear) file in the
examples folder. Figure 5.2 shows this sample model where cell G6 containing the net present
value is chosen as the target result to be analyzed. The target cell’s precedents in the model are
used in creating the tornado chart. Precedents are all the input and intermediate variables that
affect the outcome of the model. For instance, if the model consists of A = B + C, and where
C =D + E, then B, D, and E are the precedents for A (C is not a precedent as it is only an
intermediate calculated value). Figure 5.2 also shows the testing range of each precedent
variable used to estimate the target result. If the precedent variables are simple inputs, then the
testing range will be a simple perturbation based on the range chosen (e.g., the default is
110%). Each precedent variable can be perturbed at different percentages if required. A wider
range is important as it is better able to test extreme values rather than smaller perturbations
around the expected values. In certain circumstances, extreme values may have a larger, smaller,
or unbalanced impact (e.g., nonlinearities may occur where increasing or decreasing economies
of scale and scope creep in for larger or smaller values of a variable) and only a wider range will
capture this nonlinear impact.

17 |Page



Procedure

RISK SIMULATOR

e Select the single output cell (i.e., a cell with a function or equation) in an Excel model
(e.g., cell GG is selected in our example).

o Sclect Risk Simmiator | Tools | Tornado Analysis.

e Review the precedents and rename them as needed (renaming the precedents to
shorter names allows a more visually pleasing tornado and spider chart), and click OK.

Mogenb AUCKOHTUPOBAHHOIO NOTOKA AeHEeXHbIX CpefcTB

bazoewil 200 2005 Cymua mekyuyux sHadesul yucmod npubsiny  §1,896.63
Pasmep crudku ¢ yUemoM PhIHOUHEIX DUGKOS 15.00% Cymma mexyujux sHadexud snoxeHud $1,800.00
Pasmep crxudku Mo MepcoHansHLIM pucKam 5.00% Yucman mekyiias cmouMocms $06.63 1
YposeHs pocma npodax & 200080M UCUUGTEHUU 2.00% BuymperHas HopMa npubsinu 18.80%
YpoBeHE GHUNEHUS UEH 5.00% Owynaemocme uxeecmuyull 537%
Sthhexmusras cmaska Hanoea 40.00%
2005 2006 2007 2008 2009
CpedHAA ugHa npogykTa A $10.00 $9.50 $9.03 $8.57 $8.15
CpegHAA ueHa npogykTa B $12.25 $11.64 $11.06 $10.50 $9.98
CpegHAA ugHa npogykTa C $15.15 $14.39 $13.67 $12.99 §12.34
KonuyecTeo npogykTa A 50.00 51.00 52.02 53.06 54.12
KonwyecTeo npogykTa B 35.00 35.70 36.41 3714 37.89
KonuyecTeo npogykTa C 20.00 20.40 20.81 21.22 21.65
CoeOKyNHLIA goxon §1,231.75 | $1,193.57 $1,156.57 $1,120.71 £1,085.97
CTOMMOCTE NPOOaHHEIX TOBAPOR 5184.76 $179.03 5173.48 5168.11 $162.90
Banoeo# goxon §1,046.99 | $1,014.53 £983.08 £952.60 £923.07
OnepauyoHHEIE pacxodsl $157.50 $5160.65 5163.86 5167.14 5170.48
AOMWHUCTPATUEHO-X03ANCTEEHHBIE PACKOOE! $15.75 $16.07 $16.39 516.71 $17.05
[oxon oT oCHOBHOW AEATENLHOCTH ([0 YyNNaTkl HANoroe, 8873.74 §837.82 £802.83 5768.75 §735.54
Nanoc 5$10.00 5$10.00 $10.00 $10.00 §10.00
AMopTHIaUmA 53.00 53.00 $3.00 $3.00 $3.00
MpuBEINL o ynnaTkl NPOLEHTOE W HANOTOBE £860.74 §824.82 £789.83 §755.75 §722.54
BeINNaTkl N0 NPOLEHTAM 52.00 52.00 52.00 52.00 52.00
MpubEINL o ynnaTkl Hanoroe §858.74 §822.82 §787.83 §753.75 §720.54
Hanora 5343.50 532913 $315.13 §301.50 §288.22
Yucran npubbins §515.24 £493.69 §472.70 $452.25 §432.33
WNanoc 513.00 513.00 $13.00 $13.00 §13.00
Wamenenwe B yncTom oBopoTHOM Kanutane 50.00 50.00 §0.00 §0.00 §0.00
KanutaneHele 3atpars 50.00 50.00 §0.00 §0.00 §0.00
CeobogHbIR NOTOK AEHEeXHBLIX CPeacTE §528.24 §506.69 5485.70 5465.25 $445.33
WHEECTHUMH [ $1,800.00 | | | |

Figure 5.1 — Sample Model
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A B & D E F G H J K L M
1
2 Mopgenb AUCKOHTUPOBAaHHOIO NOTOKA AEHEXHbIX CPEACTB
3
4 ba3oewil 200 2005 Cymma mekywux sxadenull yuemol npubsinu  §1,896.63
5 PazMep GKudKU G yUEmoM DbIHOYHLIX PUGKOE 15.00% CymMMa MexyLux 3HayeHul anoxexul $1,800.00
zl Pasmep crudku o MepCoHansHeIM PUGKaM 5.00% Yucmas mexywas cmouMocme $96.63
7 Ypoaeti pocma npodax & 2000800 UGHUGTEHUL 2.00% Brympennss HopwMa mpubbimu 18.80%
8 YpoeeHs CHUNXEHUS UeH 5.00% Oxkynaemocms uxeecmuyud 5.37%
9 Sbbexkmueras cmaeka Hamoza 40.00%
10
1" 2005 2006 2007 2008 2009
12 CpeaHAn LieHa NpopykTa A 510.00 59.50 $9.03 | 5857 | 5815 |
13 CpefHAA LeHa npoaykTa B $1225 $11.64 LEE| [ san&n | o 1
14 CpeaHAA LeHa npoaykta C $15.15 $14.30 Ananmz "TopHago™
15 Konuuecteo npoaykta A 50.00 51.00
16 KonuuecTao npoayka B 35.00 3570 [Npu aHaNK3e “TOPHARO™ COBASKITCA CTATUYECKHE NEPTYPEaLMM (TO ECT NPELEREHTHI
nogs: DTy onromy 3a pas) oA a
17 Kenuyectso npoaykra C 2000 20.40 AuEiKN PESYRETATOR. OK yetca ana BEKHEIX P3KTOPOE
18 COBOKYNHBIA gox0a $1,231.75 | $1,193.57 YCNEWIHOCTH MOZENH NEPEM BLINGIHEHHEN CHMY AL,
19 CTOAMOCTL NPOLAHHLIX TOBAPOB $184.76 $179.03
20 Banoeoii goxog $1,046.99 | $1,014.53 n NpeueneHTh, HIDKE, W BHECUTE HEOBXOAMMBIE M3MEHEHMR
21 OnepaunoHHble pacxogs! $157.50 $160.65 Select |Name | Worksheet | Cell Base Value | % Upside | % Downside | Test Points -
22 ANMUHWUCTPATHEHO-X03ANCTEEHHbIE PACXOABI 51575 $16.07 [v  Pazmep DCF c5 0.15 10% 10% 10
23 lloxon ot i nes (mo ynnatei $873.74 | $837.82 [¥  Iweecrn DCF €3 1800 0% 0% 10
24| Vawoc $10.00 §10.00 [T Kamman DCF €3 0 0% 0% 10
25 AMOpTVIEUMA $3.00 $3.00 [T Msmewe DCF €z 0 0% 0% 10
26 NpudLInL fo ynnarsi np " §860.74 | $824.82 ¥ Mskec DCF c¢ 10 0% 0% 10
27 BeINNaTkl N0 NPOLEHTEM $2.00 $2.00 ¥  Awmopm DCF c25 k] 10% 10% 10
28 MpubLINb A0 yNNaTel HANOTOB $858.74 $822.82 [¥  3dgext DCF co 04 10% 10% 10
29 Hanom $34350 $329.13 [¥  Bunnar DCF co7 2 10% 10% 10
30 Yuctan npubeINL $515.24 $493.69 [V Komwuec DCF Ci5 50 10% 10% 10
3 Mamoc $13.00 §13.00 ¥ Kommec DCF Cle 3 10% 10% 10
32 MameHenne B yucTom 06opoTHOM KanuTane $0.00 $0.00 [V Konwuec DCF ci7 20 10% 10% 10 j
33 KanutaneHele 3aTparel $0.00 $0.00 Onupan
34 CeoboaHbIi NOTOK OeHEXHBIX CPeacTE $528.24 $506.69 B
35 @) Mokasats Bce NEpeMertbe [F] Wenanesosars anpec auein
3 Hesecraum (St ] T | © rossseresese| 5 nopencce [ i e
T S o
39 @uraHcoesIl aHanu3 [] Wcnonbsosars moSansHbie HACTPOHKK Apneix TaBmaust | Mvia ausitin (12 Gyxe) -
40 Tekymee noToka cpegen  $528.24 $440.60
M Tekyuee 3Ha4YeHHE WHBECTHLIMOHHBIX 3aTpaT $1,800.00 $0.00 @ AHENKEWPOBATE TONBKO TEKYLUMIA NIMCT () AHBMKSMPOBATE BCE NUCTEI
42 UHCTLIA NOTOK AEHEXHBLIX CPEACTR ($1,271.76) $606 69
43
44

Figure 5.2 — Running Tornado Analysis

Results Figure 5.3 shows the resulting tornado analysis report, which indicates that capital investment
Interpretation has the largest impact on net present value, followed by tax rate, average sale price, quantity
demanded of the product lines, and so forth. The report contains four distinct elements:

A statistical summary listing the procedure performed.

A sensitivity table (Figure 5.4) showing the starting NPV base value of 96.63 and how each
input is changed (e.g., Investment is changed from $1,800 to $1,980 on the upside with a +10%
swing, and from $1,800 to $1,620 on the downside with a —10% swing. The resulting upside
and downside values on NPV is —$83.37 and $276.63, with a total change of $360, making
investment the variable with the highest impact on NPV.) The precedent variables are ranked
from the highest impact to the lowest impact.

A spider chart (Figure 5.5) illustrating the effects graphically. The y-axis is the NPV target value
while the x-axis depicts the percentage change on each of the precedent values (the central
point is the base case value at 96.63 at 0% change from the base value of each precedent). A
positively sloped line indicates a positive relationship or effect, while negatively sloped lines
indicate a negative relationship (e.g., Investment is negatively sloped, which means that the
higher the investment level, the lower the NPV). The absolute value of the slope indicates the
magnitude of the effect (a steep line indicates a higher impact on the NPV y-axis given a change
in the precedent x-axis).

A tornado chart illustrating the effects in another graphical manner, where the highest
impacting precedent is listed first. The x-axis is the NPV value, with the center of the chart
being the base case condition. Green bars in the chart indicate a positive effect, while red bars
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indicate a negative effect. Therefore, for investments, the red bar on the right side indicates a
negative effect of investment on higher NPV—in other words, capital investment and NPV are
negatively correlated. The opposite is true for price and quantity of products A to C (their green
bars are on the right side of the chart).

F'pachuku "TopHano" u naykooBpa3sHbie guarpammMbl

CratMcTu4eckas crnpaeka

BeckMa BYHKUAOHANEHIM UHCTRYMEHTOM CHMYMALMN ABNAKTCA rPaduky "TOpHAR0". OHW DUKCMPYKT CTATMYECKOS BO3AEACTENS KAXA0NH NepemMeHHOM Ha Pe3ynbTaThl MOAEeni. To 8CTb MHCTPYMEHT ABTOMATHUSCKN
NoABepraeT KKy NepemenHyio NpeLeienTa B Moaen nepTypGaumn 8 Npefenax 33AaHHOM0 NONL30BaTENEM 3HAYEHHA, DVKCMPYeT KoNeGaHNA B NPOTHO3e MOAENN NN B UTOTOBEIX Pe3yNbTaTax i COCTABNAET CIMCOK
UTOTOBKIX NEPTYRGALMIA, PaHXMPOBAHHEIX B NOPALKE YOLIBAHNA JHAUMMOCTH. MPeLBneHTsl - 3T0 TONLKO MCXOAHBIE U MPOMEXYTOUHEIE MEPeMEHHEI, KOTOPLIE BIMAKT H3 PE3yNbTaTsl MOAEnA. HanpiMep, ecnn mMofens
cocTouT 3 A=B + C,rge C =D + E, 10 B, D  E ABNAKTCA NpeuegeHTamu gna A (C He ABNASTCA NpeuedeHToM, TaK KaK OHO NMWWb NPOMEXYTOYHOE BLIMWCIIEHHOE 3HAaYeHWe). [ManasoH M YWCMO 3HAYeHWN,
NOABEPrAWMXCA NepTypGauny, 330aKTCA NONL3CEATENEM, W ANA HUX MOMT ObiTe YCT3HOBMEHH! KPAMHME 3HAYEHWA, 3 He TOMkKD HeBonmbWMe 3HAYeHWA NepTypauni B rPaHULAX OMMAAEMBIX 3HZYEHWA. TpH
HEKOTOPLIX YCNOBUAX KPAMHNE 3HAYEHNA MOMYT MMETL GOMLLWEE, MeHbWe WM HecTalnnkHoe Bo3aelicTene (T.e. HEMMHEHOCTE MOXKET BO3HNKATL Tam, fde NpY YBEMMYEHHN 1 YMEHLWEHIM 3HAYEHUA NepeMEHHON
NPOMCXOMNT YBENHYEHNE UMM YMEHEWEHWE 3ddeKTa MacTala 1 PAcNon3aHue rpakuLL), W ToNEKD GONee WHPOKKA CNEKTP NO3BONWT 33MKCHPOBATE 3T0 HEMWHENHOS BoadedcTaNE

B rpaguke “TOPHaRo” NEPeYNCNAIOTCA BCE WCXOHEIE 3HAYEHNA, KOTOPLIE YNIPABNAIOT MOAGNEID, HAYMHAA OT MCXOOHON NepeMeHHON, KOTOPaA MMeeT Haudonkwee BNUAHNE HA Pe3yNsTaTel. MPaduK NONYYAETCH &
peaynsTaTe NepTypGMPOBAHUA KIKA0M0 WCXOMHOTO NPELENeHTa B HEKOTOPOM COOTESTCTEYIOWEM OWanasoHe (Hanpumep, +10% oT Ga30B0ra BapUaHTa) N0 OQHOMY 33 Pas W CPABHEHMA WX Pe3yNbTATOR ¢ G330BLIM
gapwaHTom. MaykooOpas3Han guarpaMmMa BeIMAGUT, KaK Nayk, 1 MMeeT LeHTpankHoe “Teno™ » MHOMECTBO BEICTYNAKIWMX “Hor™. Kpneana nonoxwTensHOro HakNoHa 0003HavaeT NoNoMMTENLHO OTHOWEHWe, 3 Kpueas
OTPHLATENRHOTD HAKNOHA 0603HAYAET OTPULATENEHEE OT) . K Tomy e, N AMETPaAMMEl MOXHO WCMONE30BATE ANA HAMATHOTD NPENCTABNEHUA NHHER W HenuHed aT A. Tpadukn
"TOPHEAE™ U NaykooBpa3Hele AMArpaMMel NOMOTaT BEIABNATE KOMTUYECKH BaXHLIE HaKTOPLI YCMEXa AYeeK BLIBONA ANA ONPefeneHiA BEOOHLIX 3HAYEHWI, KOTOLIE CNEAYeT CAMYMMPOBaTL. CUMYNALMIO CriedyeT
BEINOMHATE NO OTHOWEHKKD K BEIRBNEHHEIM KPHTUYECKUM NEPEMEHHEIM HeONpPeENEHHOTD XapakTepa. He crignyeT NONYCTY TPATHTE BPEMA HA CUMYNALIMK NEPeMEHHEIX, KOTODBIE HE HMEKT HeONpeaenEHHEI XapaKkTep
WM e He 0Ka3LIBAIOT cnafioe BoageicTane Ha pe3ynbTaTkl

Peaynetar
[Ea3osoe aHaveHne: 96 6261638553219 MamMeHEHNA B MCXOAHBX
NayxkooBpa3nan AuarpaMma
] e APGEKTUBH ne ne GaaoBora
MpengapnTensHan AYeiika BLIXOAHOTD  BLIXOOHOTO acTn VCKOAHOTO WCKOAHOTO  BaphauTa
C36: MHeecTULMN 276.62616 -83.373836 360.00] $1,620.00 §1,980.00 $1,800.00
C9: 3hdekTMBHaA CTaBKa Hanora 219.72693 -26.474599 246.20 36.00% 44.00% 40.00%
C12: CpedHAA LeHa NpoaykTa A 3.4255424 189.82679 186.40] $9.00 $11.00 §10.00
C13: CpegHAn ueHa npofykTa B 16.706631 176.5457 159 34 $11.03 $1348 $1225
C15: KonnyecTeo npogykTa A 23177498 170.07483 146.90| 45.00 55.00 50.00
C16: Konwyecteo npoaykta B 30533 16271933 13219 3150 3850 35.00
C14: CpegHAR ueHa npogykra C 40.148587 153.10574 112.96) 513.64 $16.67 $15.15
C17: KenuuecTeo npoaykta C 48.047369 14520496 97.16| 18.00 22.00 20.00
C5: Paamep CKMOKW C y4eToM peIHOYHL prd  138.23913  57.029841 81.21 13.50% 16.50% 15.00%
C8: YpoBeH CHIKEHWA LIeH 116.80381 76.640952 40.16| 4.50% 5.50% 5.00%
C7: ¥poeeHs pocTa npogax 8 rogoeom wcu] 90.588354  102.68541 12.10] 1.80% 2.20% 2.00%
C24: MaHoc 95.084173 98.168155 3.08 $9.00 $11.00 §10.00 ~
C25: AMDpTH3aLMA 96.163566 97.088761 093 8270 $3.30 $3.00 -S00T = o7
C27: BEINNaTHl N0 NPOLEHTAM 97.088761 96.163566 0.93] $1.80 $2.20 52.00 P00 ; ; ; *If C8
-10.00 % -5.00 % 0.00 % 5.00 % 10.00 %

Figure 5.3 — Tornado Analysis Report

Remember that tornado analysis is a static sensitivity analysis applied on each input vatiable in
the model—that is, each variable is perturbed individually and the resulting effects are tabulated.
This approach makes tornado analysis a key component to execute before running a
simulation. One of the very first steps in risk analysis is capturing and identifying the most
important impact drivers in the model. The next step is to identify which of these important
impact drivers are uncertain. These uncertain impact drivers ate the critical success dtivers of a
project, where the results of the model depend on these critical success drivers. These variables
are the ones that should be simulated. Do not waste time simulating variables that are neither
uncertain nor have little impact on the results. Tornado charts assist in identifying these critical
success drivers quickly and easily. Following this example, it might be that price and quantity
should be simulated, assuming that the required investment and effective tax rate are both
known in advance and unchanging.

120 | Page



RISK SIMULATOR

Bazoeoe aHaYeHwe: 96 6261638553219 MameHeHWA B MCXOOHEI 3HAYEHWAX
e a OuanaaoH ne ne 3HaueHne
BRIXOQHOTD  BbIXOQHOMD  3Q@eKTHEH | WCXOQHOMD WCxogHoro  Gasoeoro
MpeneapUTENEHAA AYEKA IHAYEHWA  3HAYEHWA acTH JHAYeHWA 3HayeHWA BapWaHTa
C36: HBeCTMLMN 27662616 -B3.373836 360.00| $1,620.00 $1,880.00 $1,800.00
C8: 3deKkTWEHAA CTAEKA HaNora 21972683 -26.474599 246.20 36.00% 44.00% 40.00%
C12: CpegHAA UEHA NpOOyETa A 34255424 18982679 186.40 $9.00 $11.00 $10.00
C13 CpenHAA ueHa npoaykTa B 16.706631 176.5457 159.84 $11.03 $13.48 51225
15: KonwyecTeo npogykTa A 23177498 170.07483 146.90 45.00 55.00 50.00
C16: Konwyecteo nponykTa B 305633 16271933 13219 31560 38560 35.00
C14: CpegHAA ueHa npogykTa C 40146587 153.10574 112.96 $13.64 $16.67 51515
C17: Konwuyecteo npogykTa C 43.047369 14520496 97.16 18.00 2200 20.00
CH: Paamep CKWOKKW C YUETOM peIHOUHB pud  138.23913  57.029341 81.21 13.50% 16.50% 15.00%
C8: YpoBEHb CHUM¥EHWA UeH 116.80381 76.640952 4016 4 50% 5.50% 5.00%
C7. ¥poBeHE pOCTa Npogax e rogoeom oy 90588354 102.68541 12.10 1.80% 2.20% 2.00%
C24: MaHoc 95084173 98168155 3.08 59.00 511.00 $10.00
C25 AMopTuaaumA 96.163566 97.088761 0.93 5270 $3.30 $3.00
C27: Beinnatel N0 NPOUEHTAM 97.088761 96.163566 0.93 $1.80 $2.20 $2.00
Figure 5.4 — Sensitivity Table
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Figure 5.5 — Spider Chart
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Figure 5.6 — Tornado Chart

Although the tornado chart is easier to read, the spider chart is important for determining if
there are any nonlinearities in the model. For instance, Figure 5.7 shows another spider chart
where nonlinearities are fairly evident (the lines on the graph are not straight but curved). The
model used is Tornado and Sensitivity Charts (Nonlinear), which uses the Black-Scholes option
pricing model as an example. Such nonlinearities cannot be ascertained from a tornado chart
and may be important information in the model or provide decision makers with important
insight into the model’s dynamics.

Figure 5.2 shows the Tornado analysis tool’s user interface. Notice that there are a few new
enhancements starting in Risk Simulator version 4 and beyond. Here are some tips on running
Tornado analysis and details on the new enhancements:

e Tornado analysis should never be run just once. It is meant as a model diagnostic tool,
which means that it should ideally be run several times on the same model. For
instance, in a large model, Tornado can be run the first time using all of the default
settings and all precedents should be shown (select Show All Variables). The result
may be a large report and long (and potentially unsightly) Tornado charts.
Nonetheless, this analysis provides a great starting point to determine how many of
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the precedents are considered critical success factors. For example, the Tornado chart
may show that the first 5 variables have high impact on the output, while the
remaining 200 variables have little to no impact, in which case, a second Tornado
analysis is run showing fewer variables. For example, select the Show Top 10 Variables
if the first 5 are critical, thereby creating a nice report and Tornado chart that shows a
contrast between the key factors and less critical factors. (You should never show a
Tornado chart with only the key variables. You need to show some less critical
variables as a contrast to their effects on the output). Finally, the default testing points
can be increased from the £10% of the parameter to some larger value to test for
nonlinearities (the Spider chart will show nonlinear lines and Tornado charts will be
skewed to one side if the precedent effects are nonlinear).

o Selecting Use Cell Address is always a good idea if your model is large, as it allows you to
identify the location (worksheet name and cell address) of a precedent cell. If this
option is not selected, the software will apply its own fuzzy logic in an attempt to
determine the name of each precedent variable (in a large model, the names might
sometimes end up being confusing, with repeated vatiables or the names that are too
long, possibly making the Tornado chart unsightly).

o The Analyze This Worksheet and Analyze All Worksheets options allow you to control
whether the precedents should only be part of the current worksheet or include all
worksheets in the same workbook. This option comes in handy when you are only
attempting to analyze an output based on values in the current sheet versus
petrforming a global search of all linked precedents across multiple worksheets in the
same workbook.

e Selecting Use Global Setting is useful when you have a large model and wish to test all
the precedents at, say, £50% instead of the default 10%. Instead of having to change
each precedent’s test values one at a time, you can select this option, change one
setting and click somewhere else in the user interface to change the entire list of the
precedents. Deselecting this option will allow you the control to change test points one
precedent at a time.

o Ignore Zero or Enmpty 1 alues 1s an option turned on by default where precedent cells with
zero or empty values will not be run in the Tornado analysis. This is the typical setting.

o Highlight Possible Integer 1 alues is an option that quickly identifies all possible precedent
cells that currently have integer inputs. This function is sometimes important if your
model uses switches (e.g., functions such as IF a cell is 1. then something happens, and
IF a cell has a 0 value, something else happens, or integers such as 1, 2, 3, etc., which
you do not wish to test). For instance, £10% of a flag switch value of 1 will return a
test value of 0.9 and 1.1, both of which are irrelevant and incorrect input values in the
model, and Excel may interpret the function as an error. This option, when selected,
will quickly highlight potential problem areas for Tornado analysis, and then you can
determine which precedents to turn on or off manually, or you can use the Ignore
Possible Integer Values function to turn all of them off simultaneously.
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Figure 5.7 — Nonlinear Spider Chart

5.2 AHaAn3 9yBCTBHTEABHOCTH

While tornado analysis (tornado charts and spider charts) applies static perturbations before a
simulation run, sensitivity analysis applies dynamic perturbations created after the simulation
run. Tornado and spider charts are the results of static perturbations, meaning that each
precedent or assumption variable is perturbed a preset amount one at a time, and the
fluctuations in the results are tabulated. In contrast, sensitivity charts are the results of dynamic
perturbations in the sense that multiple assumptions are perturbed simultaneously and their
interactions in the model and correlations among variables are captured in the fluctuations of
the results. Tornado charts, therefore, identify which variables drive the results the most and,
hence, are suitable for simulation, whereas sensitivity charts identify the impact to the results
when multiple interacting variables are simulated together in the model. This effect is cleatly
illustrated in Figure 5.8. Notice that the ranking of critical success drivers similar to the tornado
chart in the previous examples. However, if correlations are added between the assumptions, a
very different picture results, as shown in Figure 5.9. Notice, for instance, that price erosion had
little impact on NPV, but when some of the input assumptions are correlated, the interaction
that exists between these correlated variables makes price erosion have more impact.
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Figure 5.8 — Sensitivity Chart Without Correlations
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Figure 5.9 — Sensitivity Chart With Correlations

Procedure e Open or create a model, define assumptions and forecasts, and 7 the simmlation (the
example here uses the Tornado and Sensitivity Charts (Linear) file).

o Select Risk Simmulator | Tools | Sensitivity Analysis.
e Select the forecast of choice to analyze and click OK (Figure 5.10)
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Figure 5.10 — Running Sensitivity Analysis

The results of the sensitivity analysis comprise a report and two key charts. The first is a
nonlinear rank correlation chart (Figure 5.11) that ranks from highest to lowest the assumption-
forecast correlation pairs. These correlations are nonlinear and nonparametric, making them
free of any distributional requirements (i.e., an assumption with a Weibull distribution can be
compared to another with a beta distribution). The results from this chart are fairly similar to
that of the tornado analysis seen previously (of course, without the capital investment value,
which we decided was a known value and, hence, was not simulated), with one special
exception: Tax rate was relegated to a much lower position in the sensitivity analysis chart
(Figure 5.11) as compared to the tornado chart (Figure 5.6). This is because by itself, tax rate
will have a significant impact, but once the other variables are interacting in the model, it
appears that tax rate has less of a dominant effect (because tax rate has a smaller distribution as
historical tax rates tend not to fluctuate too much, and also because tax rate is a straight
percentage value of the income before taxes, where other precedent variables have a larger
effect on). This example proves that performing sensitivity analysis after a simulation run is
important to ascertain if there are any interactions in the model and if the effects of certain
variables still hold. The second chart (Figure 5.12) illustrates the percent variation explained.
That is, of the fluctuations in the forecast, how much of the variation can be explained by each
of the assumptions after accounting for all the interactions among variables? Notice that the
sum of all variations explained is usually close to 100% (there are sometimes other elements
that impact the model but that cannot be captured here directly), and if correlations exist, the
sum may sometimes exceed 100% (due to the interaction effects that are cumulative).
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Figure 5.11 — Rank Correlation Chart
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Figure 5.12 — Contribution to Variance Chart

Tornado analysis is performed before a simulation run, while sensitivity analysis is performed
after a simulation run. Spider charts in tornado analysis can consider nonlinearities, while rank
correlation charts in sensitivity analysis can account for nonlinear and distributional-free
conditions.

5.3 PacripeseanreApHAA yCTAHOBKA C OAHOH HAH
HECKOABKHMH IT€PEMEHHBIMH

Another powerful simulation tool is distributional fitting. That is, determining which
distribution to use for a particular input variable in a model and what the relevant distributional
parameters are. If no historical data exist, then the analyst must make assumptions about the
variables in question. One approach is to use the Delphi method where a group of experts are
tasked with estimating the behavior of each variable. For instance, a group of mechanical
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engineers can be tasked with evaluating the extreme possibilities of a spring coil’s diameter
through rigorous experimentation or guesstimates. These values can be used as the variable’s
input parameters (e.g., uniform distribution with extreme values between 0.5 and 1.2). When
testing is not possible (e.g., market share and revenue growth rate), management can still make
estimates of potential outcomes and provide the best-case, most-likely case, and worst-case
scenarios.

However, if reliable historical data are available, distributional fitting can be accomplished.
Assuming that historical patterns hold and that history tends to repeat itself, then historical data
can be used to find the best-fitting distribution with their relevant parameters to better define
the variables to be simulated. Figures 5.13, 5.14, and 5.15 illustrate a distributional-fitting
example. This illustration uses the Data Fitting file in the examples folder.

e Open a spreadsheet with existing data for fitting.
o Select the data you wish to fit (data should be in a single column with multiple rows).
o Select Risk Simmlator | Tools | Distributional Fitting (Single-1 ariable).

e Select the specific distributions you wish to fit to or keep the default where all
distributions are selected and click OK (Figure 5.13).

e Review the results of the fit, choose the relevant distribution you want, and click OK
(Figure 5.14).

The null hypothesis being tested is such that the fitted distribution is the same distribution
as the population from which the sample data to be fitted comes. Thus, if the computed p-
value is lower than a critical alpha level (typically 0.10 or 0.05), then the distribution is the
wrong distribution. Conversely, the higher the p-value, the better the distribution fits the
data. Roughly, you can think of p-value as a percentage explained; that is, if the p-value is
0.9727 (Figure 5.14), then setting a normal distribution with a mean of 99.28 and a
standard deviation of 10.17 explains about 97.27% of the variation in the data, indicating
an especially good fit. Both the results (Figure 5.14) and the report (Figure 5.15) show the
test statistic, p-value, theoretical statistics (based on the selected distribution), empirical
statistics (based on the raw data), the original data (to maintain a record of the data used),
and the assumption complete with the relevant distributional parameters (ie., if you
selected the option to automatically generate assumption and if a simulation profile already
exists). The results also rank all the selected distributions and how well they fit the data.
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Figure 5.13 — Single Variable Distributional Fitting
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Figure 5.14 — Distributional Fitting Result
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Figure 5.15 — Distributional Fitting Report

For fitting multiple variables, the process is fairly similar to fitting individual variables. However,
the data should be atranged in columns (i.e., each variable is arranged as a column) and all the
variables are fitted one at a time.

Open a spreadsheet with existing data for fitting.
Select the data you wish to fit (data should be in a multiple columns with multiple rows).

Select Risk Simmlator

Tools | Distributional Fitting (Multi-V ariable).

Review the data, choose the relevant types of distribution you want and click OK.

Notice that the statistical ranking methods used in the distributional fitting routines are the chi-
square test and KKolmogorov-Smirnov test. The former is used to test discrete distributions and
the latter, continuous distributions. Briefly, a hypothesis test coupled with an internal
optimization routine is used to find the best-fitting parameters on each distribution tested, and
the results are ranked from the best fit to the worst fit.
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5.4 Bootstrap MosearnpoBaHme

Bootstrap simulation is a simple technique that estimates the reliability or accuracy of forecast
statistics or other sample raw data. Essentally, bootstrap simulation is used in hypothesis
testing. Classical methods used in the past relied on mathematical formulas to describe the
accuracy of sample statistics. These methods assume that the distribution of a sample statistic
approaches a normal distribution, making the calculation of the statistic’s standard etror or
confidence interval relatively easy. However, when a statistic’s sampling distribution is not
normally distributed or easily found, these classical methods are difficult to use or are invalid. In
contrast, bootstrapping analyzes sample statistics empirically by repeatedly sampling the data
and creating distributions of the different statistics from each sampling.

o Run a simmlation.
o Select Risk Sinmiator | Tools | Nonparansetric Bootstrap.

e Select only one forecast to bootstrap, select the stazistic(s) to bootstrap, enter the number
of bootstrap trials, and click OK (Figure 5.16).
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Figure 5.16 — Nonparametric Bootstrap Simulation

In essence, nonparametric bootstrap simulation can be thought of as simulation based on a
simulation. Thus, after running a simulation, the resulting statistics are displayed, but the
accuracy of such statistics and their statistical significance are sometimes in question. For
instance, if a simulation run’s skewness statistic is —0.10, is this distribution truly negatively
skewed or is the slight negative value attributable to random chance? What about —0.15, —0.20,
and so forth? That is, how far is far enough such that this distribution is considered to be
negatively skewed? The same question can be applied to all the other statistics. Is one
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distribution statistically identical to another distribution with regard to some computed statistics
or are they significantly different? Suppose for instance, the 90% confidence for the skewness
statistic is between —0.0189 and 0.0952, such that the value O falls within this confidence,
indicating that on a 90% confidence, the skewness of this forecast is not statistically significantly
different from 0, ot that this distribution can be considered as symmetrical and not skewed.
Conversely, if the value 0 falls outside of this confidence, then the opposite is true, and the
distribution is skewed (positively skewed if the forecast statistic is positive, and negatively
skewed if the forecast statistic is negative). Figure 5.17 illustrates some sample bootstrap results.
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Figure 5.17 — Bootstrap Simulation Results

The term bootstrap comes from the saying, “to pull oneself up by one’s own bootstraps,” and
is applicable because this method uses the distribution of statistics themselves to analyze the
statistics’ accuracy. Nonparametric simulation is simply randomly picking golf balls from a large
basket with replacement where each golf ball is based on a historical data point. Suppose there
are 365 golf balls in the basket (representing 365 historical data points). Imagine that the value
of each golf ball picked at random is written on a large whiteboard. The results of the 365 balls
picked with replacement are written in the first column of the board with 365 rows of numbers.
Relevant statistics (e.g., mean, median, standard deviation, etc.) are calculated on these 365
rows. The process is then repeated, say, five thousand times. The whiteboard will now be filled
with 365 rows and 5,000 columns. Hence, 5,000 sets of statistics (i.e., there will be 5,000 means,
5,000 medians, 5,000 standard deviations, etc.) are tabulated and their distributions shown. The
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relevant statistics of the statistics are then tabulated, where from these results one can ascertain
how confident the simulated statistics are. In other words, in a simple 10,000-trial simulation,
say the resulting forecast average is found to be $5.00. How certain is the analyst of the results?
Bootstrapping allows the user to ascertain the confidence interval of the calculated mean
statistic, indicating the distribution of the statistics. Finally, bootstrap results are important
because according to the Law of Large Numbers and the Central Limit Theorem in statistics,
the mean of the sample means is an unbiased estimator and approaches the true population
mean when the sample size increases.

5.5 Ilposepka ruriore3pr

A hypothesis test is performed when testing the means and variances of two distributions to
determine if they are statistically identical or statistically different from one another; that is,
whether the differences are based on random chance or if they are, in fact, statistically
significant.

o Run a simmlation.
o Select Risk Simmlator | Tools | Hypothesis Testing.

o Select only mwo forecasts to test at a time, select the type of hypothesis test you wish to
run, and click OK (Figure 5.18).

r@ Mposepka rMNoTeshE u
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() 33BWCHMBIE NEPHEIE BBIGODKK

Figure 5.18 — Hypothesis Testing
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A two-tailed hypothesis test is performed on the null hypothesis (HO) such that the two
variables' population means are statistically identical to one another. The alternative hypothesis
(Ha) is such that the population means are statistically different from one another. If the
calculated p-values are less than or equal to 0.01, 0.05, or 0.10, this means that the null
hypothesis is rejected, which implies that the forecast means are statistically significantly
different at the 1%, 5%, and 10% significance levels. If the null hypothesis is not rejected when
the p-values are high, the means of the two forecast distributions are statistically similar to one
another. The same analysis is performed on variances of two forecasts at a time using the
pairwise F-test. If the p-values are small, then the variances (and standard deviations) are
statistically different from one another; otherwise, for large p-values, the variances are
statistically identical to one another.

MpoBepkKa rMNoTe3kl No NoBoAY cpeaHUX U AUCNepcHil B ABYX NPOTrHO3ax

CratMcTM4ecKkan cn paBKa

Mpoeepka esunomessl NPoeodUMcA NpU aHanuse cpedHux U ducnepcull deyx enlBopOK JaHHBIX C LEME OMpedeneHUs Ux Cmamucmuyeckol udeHmuuHoCmL
unu cmamucmuyeckoeo omnudug opye om dpyea. TakuM oBpasomM, Uene Mpoeepky — onpedenums, AENAIMCA AU MOMYYEHHLIE DE3NUYLA Mexdy OeyMA
cpedHuMU U DeyMA AUCTEDCUAMU ClyYalHaIMU LU ¥e OHU Ha caMoM Gene omnuvawmces dpye om dpyea. Kpumepul CmewdeHma Ha dee NepeMeHHsle ©
HepaeHsIMU ducrepcuamMy (Mpednonasaemcsd, Ymo JUCTepcUd CoOBoKYMHOCTIU MpoeHoza Ne 1 Gydem omaudamecs om QUCiepcll COBOKYITHOCITIU MpOeHO3a
Ne 2} npumeHuM & mom cryvae, koeda esifopKU € MDOEHO3E OMHOCAIMCA K Da3HbIM COBOKYTHOCTIAM (Harpumep, dadHeie Obinu cobpadsl € Jeyx pasHblx
zeoepathuyecKUy mouxax, deyx pazHbly nodpazdenenusy opesaHuzauuu u m. @) Kpumepul Cmewdenma (tkpumepull) Ha Gee NepemMerHbie © pasHbIMLU
ducnepcuamu (Mpednonasaemcs, Ymo OUCTEpCUs COBOKYMHOCMU nMpoeHosa Ne 1 Byfem paeHol COBOKYMHOCMIU NpozHoza Ne 2} npumexsemcs, xosda
enIBOPKY € MPOSHO3E OMHOCAMCA K CXOMUM COBOKYMHOCTAM (RanpuMep, daxHsle o Oeyx GeU2aMEnsX DasHOU KOHCMDYKUUY, HO UMEHWUX GHaNoBLYHEE
MEXHUYECKUE Xapakmepucmuky u m. ). Maprsil tkpumepull Ha Gse 33EUCUMBIE MEDEMEHHLIE MPUMEHUM, k0203 MpU MPOSHOSUPOESHUL eniBopKy
MPUHEGNEXENT K CXOKLUM COBOKYTTHOCIMAM (Hanpumep, dawHsie cobparnsie & 00Hol U moll ¥e epynne noxkynamenel, Ho NPy pasHex 0GCMORMENECMEax U m.
aJ.

LeyemopoHHull Kpumepull NPpoeepku 2uUMOMess! MPUMEHASICA MDY MDOBEDKE HYMeewlx eunomes (Ho), kozda dea COBOKYMHbIY CPEOHUX MEDEMEHHBIX
cmamucmuiecky u@eHmuyHel Gpye Apyey. AMeMEpHaMmueHas aunomesa npednonazaem, Umo COEOKYNHEIE COEOHUE RENAKIMCA PaznuuHLIMY. Ecnu &
pesynemaime nodcuemoe p-3HaYeHUA MeHeWe uny paedst 0,04, 0,05 unu 0,1, eunomesa omeepaaemcs, Ymo nodpasyMesaem, Umo nposHo3Hbe coedHue
CMAMUCIMUYECKL 3HAYUMEeNEHO Da3HAMCA Ha ypoedAx docmoeepHocmu e 1%, 5% u 10%. Ecnu Hymeeas esunomesa He OMmeepsHyima Mpu esiCokLUX
noKazamenax p-3Havenull, cpedHue OeyxX MDOEHOZHLIX E6IG0D0K CIMEMUCITIUNECKU CXoxU Apye ¢ OpyeoM. AHanosuyHelll aHanus esinonHsemca ana ducnepcudl
deyx MpOSHO308 MpU LCMOME30EaHUL MONEPHO20 F-KpUMEPLS. ECU P-3HEYEHUR Mansl, mo ducnepcul (U cmaHdapmHsle OMKNOHEHUSR) CMamucmuyecky
omnuvaomcea dpye om dpyea, u HaoBopom, Mpu BoMsWLX P-3HEYEHLAX QUCTEPCLUL CIMEMUCMIUYECKY UOSHIMILUHEL

Pesynbrar

JonyueHue KpUMepUA MpOSEpKU  HepaeHsle Auciepcul:
PaccyumanHan -cmamucmuka:  1.015722
P-3xavexue OnA t-cmamucmuky:  0.309885
PaccyumanHan F-cmamucmuka:  1.063476
P-3xavexue OnA F-cmamucmuky:  0.330914

Figure 5.19 — Hypothesis Testing Results

The two-variable t-test with unequal variances (the population variance of forecast 1 is expected
to be different from the population variance of forecast 2) is appropriate when the forecast
distributions are from different populations (e.g., data collected from two different geographical
locations or two different operating business units). The two-variable t-test with equal variances
(the population variance of forecast 1 is expected to be equal to the population variance of
forecast 2) is appropriate when the forecast distributions are from similar populations (e.g., data
collected from two different engine designs with similar specifications). The paired dependent
two-vatiable t-test is appropriate when the forecast distributions are from the exact same
population (e.g., data collected from the same group of customers but on different occasions).

5.6 H3BaeueHHe AAHHBIX H COXPAHEHHE
PE3VABTATOB MOACAHPOBAHUA

A simulation’s raw data can be very easily extracted using Risk Simulator’s Data Extraction
routine. Both assumptions and forecasts can be extracted, but a simulation must first be run.
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The extracted data can then be used for a vatiety of other analysis.

Procedure e Open or create a model, define assumptions and forecasts, and 7w the sinmlation.
o Select Risk Simmulator | Tools | Data Extraction.

o Select the assumptions and /ot forecasts you wish to extract the data from and click OK.

'The data can be extracted to various formats:

e Raw data in a new worksheet where the simulated values (both assumptions and
forecasts) can then be saved or further analyzed as required

e Tlat text file where the data can be exported into other data analysis software

e Risk Simulator file where the results (both assumptions and forecasts) can be retrieved
at a later time by selecting Risk Sinuulator | Tools | Data Open/ Inport

The third option is the most popular selection, that is, to save the simulated results as a
* risksim file where the results can be retrieved later and a simulation does not have to be rerun
cach time. Figure 520 shows the dialog box for extracting or exporting and saving the
simulation results.

-
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M3BReueHne AaHHLIX WCNONb3YETCA ANA NOMYYEHWA
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Figure 5.20 — Sample Simulation Report
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5.7 Cozpars oruer

After a simulation is run, you can generate a report of the assumptions and forecasts used in the
simulation run, as well as the results obtained during the simulation run.

Procedure e Open or create a model, define assumptions and forecasts, and 7z the sinulation.
o Select Risk Simmlator | Create Report (Figure 5.21).

Cumynsuus - Example Simulation

o6wun
Yncno nonbiTok 1000
OcTaHoBKa CUMyNsLmmM np! Het
CnyuaiiHblii ICTOYHUK 999
BkniounTb koppenaumu Ha
Lonywexus
WUma G8: floxon Ums G9: 3aTpaThl
BkntoyeHo Oa BknoyeHo JiE]
SAveiika $G3$8 SAveiika $G$9
[nHamunyeckas cumynaum: Het IuHamunyeckas cumynsaum: Het
OuvanasoH OunanasoH
MuHMym -Infinity MuHuMym -Infinity
Makcumym Infinity Makcumym Infinity
PacnpepeneHnue TpeyronsHoe PacnpepgeneHnue PaBHomepHoe
MuHumanbHoe 15 MuHumanbHoe 0.85
Haubonee BeposiTHoe 2 MakcumanbHoe 125
MakcumansHoe 225

4
MporHo3bl
Uma Bblpyuka Yuncno Touek AaHHbIX 1000( - -~ )
BkrnitoyeHo fa CpepHee 0.8626 %0 0
SAverika $G$10 MeauaHa 0.8674
80
CTtaHaapTHOE OTKNOHEHUE 0.1933
To4HOCTbL NporHosa Hvcnepcus 0.0374 o
YpoBeHb TOYHOCTN - KoadhdmumeHT BapnatmBHC 0.2241 €0
YpoBeHb oLmbok - Makcumym 1.3570 50 |
MuHUMYm 0.3019 40 |
[vnanasoH 1.0551 30
AcummeTpus -0.1157 20
KypToauc -0.4480 10
25% npoueHTunb 0.7269
75% npoueHTUnb 1.0068 (?_'L.'nn- 0.50 1.00
CnyvaitHas owmbka Ha 95 0.0139%

Marpuua koppensuum

G8: loxop 9: 3aTpathbl
G8: loxopn 1.00
G9: 3aTpaThl 0.00 1.00

Figure 5.21 — Sample Simulation Report
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5.8 Amaraocraaeckmi nacTpyMeHTHI Perpeccrr o
IlporaosupoBanrma

The regression and forecasting Diagnostic tool in Risk Simulator is an advanced analytical tool
used to determine the econometric properties of your data. The diagnostics include checking
the data for heteroskedasticity, nonlinearity, outliers, specification errors, micronumerosity,
stationatity and stochastic properties, normality and sphericity of the errors, and
multicollinearity. Each test is described in more detail in its respective report in the model.

e Open the example model (Risk Simulator | Exanmples | Regression Diagnostics), go to the
Time-Series Data worksheet, and select the data, including the variable names (cells
C5:H55).

o  (lick on Risk Simmulator

Tools | Diagnostic Tool.

e Check the data and select from the Dependent 1 ariable Y drop-down menu. Click OK

when finished (Figure 5.22).
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Figure 5.22 — Running the Data Diagnostic Tool

A common violation in forecasting and regression analysis is heteroskedasticity, that is, the
variance of the errors increases over time (see Figure 5.23 for test results using the Diagnostic
tool). Visually, the width of the vertical data fluctuations inctreases, or fans out, over time, and,
typically, the coefficient of determination (R-squared coefficient) drops significantly when
heteroskedasticity exists. If the variance of the dependent variable is not constant, then the
error’s variance will not be constant. Unless the heteroskedasticity of the dependent variable is
pronounced, its effect will not be severe: The least-squares estimates will still be unbiased, and
the estimates of the slope and intercept will either be normally distributed if the errors are
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normally distributed, or at least normally distributed asymptotically (as the number of data
points becomes large) if the errors are not normally distributed. The estimate for the variance of
the slope and overall variance will be inaccurate, but the inaccuracy is not likely to be substantial
if the independent-vatiable values are symmetric about their mean.

If the number of data points is small (micronumerosity), it may be difficult to detect
assumption violations. With small sample sizes, assumption violations such as non-normality or
heteroskedasticity of variances are difficult to detect even when they are present. With a small
number of data points, linear regression offers less protection against violation of assumptions.
With few data points, it may be hard to determine how well the fitted line matches the data, or
whether a nonlinear function would be more appropriate. Even if none of the test assumptions
are violated, a linear regression on a small number of data points may not have sufficient power
to detect a significant difference between the slope and zero, even if the slope is nonzero. The
power depends on the residual error, the observed variation in the independent vatiable, the
selected significance alpha level of the test, and the number of data points. Power decreases as
the residual variance increases, decreases as the significance level is decreased (i.e., as the test is
made more stringent), increases as the variation in observed independent variable increases, and
increases as the number of data points increases.

Values may not be identically distributed because of the presence of outliers which are
anomalous values in the data. Outliers may have a strong influence over the fitted slope and
intercept, giving a poor fit to the bulk of the data points. Outliers tend to increase the estimate
of residual variance, lowering the chance of rejecting the null hypothesis (that is, creating higher
prediction etrors). They may be due to recording errors, which may be correctable, or they may
be due to the dependent-variable values not all being sampled from the same population.
Apparent outliers may also be due to the dependent-vatiable values being from the same, but
non-normal, population. However, a point may be an unusual value in either an independent or
dependent variable without necessarily being an outlier in the scatter plot. In regression analysis,
the fitted line can be highly sensitive to outliers. In other words, least squares regression is not
resistant to outliers, thus, neither is the fitted-slope estimate. A point vertically removed from
the other points can cause the fitted line to pass close to it, instead of following the general
linear trend of the rest of the data, especially if the point is relatively far horizontally from the
center of the data.

However, great care should be taken when deciding if the outliers should be removed.
Although in most cases when outliers ate removed, the regression results look better, a prioti
justification must first exist. For instance, if one is regressing the performance of a particular
firm’s stock returns, outliers caused by downturns in the stock market should be included; these
are not truly outliers as they are inevitabilities in the business cycle. Forgoing these outliers and
using the regression equation to forecast one’s retirement fund based on the firm’s stocks will
vield incorrect results at best. In contrast, suppose the outliers are caused by a single
nonrecurring business condition (e.g., merger and acquisition) and such business structural
changes are not forecast to recur. These outliers, then, should be removed and the data
cleansed prior to running a regression analysis. The analysis here only identifies outliers and it is
up to the user to determine if they should remain or be excluded.

Sometimes, a nonlinear relationship between the dependent and independent variables is more
appropriate than a linear relationship. In such cases, running a linear regression will not be
optimal. If the linear model is not the correct form, then the slope and intercept estimates and
the fitted values from the linear regression will be biased, and the fitted slope and intercept
estimates will not be meaningful. Over a restricted range of independent or dependent
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variables, nonlinear models may be well approximated by linear models (this is, in fact, the basis
of linear interpolation), but for accurate prediction, a model appropriate to the data should be
selected. A nonlinear transformation should first be applied to the data before running a
regression. One simple approach is to take the natural logarithm of the independent variable
(other approaches include taking the square root or raising the independent variable to the
second or third powet) and run a regression or forecast using the nonlinearly transformed data.

PE}S}‘J’IbTaTbI ANarHoCTHEN

MeTepockefacTMYHoCTe  2Gnema manbix BelGo Boinagamiuue aHaveHna HenuxeilHocTs
W-KpUTepuilpoBepKa rtMNoTest  ANpoKcMMaumua ECTecTEEHHAA EcTecTeeHHaA Yucno lepKa HeNUHeRHpoBepKa rMNoTEeskl

Mepemep-3HayeHne  peayneTar peayneLTar Hu#HAA rpaHiua BepxHAA rpaHiLa TbHEIE BEIN3JAKWNE  p-3HAYeHne peayneTar

Y HeT npobnem -7.86 671.70 2

¥1 02543 Homoskedastic HeT npobnem -21377 .95 64713.03 3 0.2458 linear

¥2 03371  Homoskedastic HeT npobnem ey 44593 2 0.0335 noenlinear

¥3 03649 Homoskedastic HeT npobnem -5.0T 15.69 3 0.0305 noenlinear

¥4 03066 Homoskedastic HeT npobnem -295.96 628.21 4 0.9293 linear

¥5 02495 Homoskedastic HeT npobnem 3.35 9.38 3 narar linear

Figure 5.23 — Results from Tests of Outliers, Heteroskedasticity, Micronumerosity, and Nonlinearity

Another typical issue when forecasting time-seties data is whether the independent-variable
values are truly independent of each other or are actually dependent. Dependent variable values
collected over a time seties may be autocorrelated. For setially correlated dependent-variable
values, the estimates of the slope and intercept will be unbiased, but the estimates of their
forecast and variances will not be reliable and, hence, the validity of certain statistical goodness-
of-fit tests will be flawed. For instance, interest rates, inflation rates, sales, revenues, and many
other time-series data are typically autocorrelated, where the value in the current period is
related to the value in a previous petiod, and so forth (clearly, the inflation rate in March is
related to February’s level, which, in turn, is related to January’s level, etc.). Ignoring such
blatant relationships will yield biased and less accurate forecasts. In such events, an
autocorrelated regression model, or an ARIMA model, may be better suited (Risk Szzulator
Forecasting | ARINLA). Finally, the autocorrelation functions of a series that is nonstationary
tend to decay slowly (see the nonstationary report in the model).

If autocorrelation AC(1) is nonzero, it means that the series is first-order serially correlated. If
AC(k) dies off more or less geometrically with increasing lag, it implies that the seties follows a
low-order autoregressive process. If AC(k) drops to zero after a small number of lags, it implies
that the seties follows a low-order moving-average process. Partial correlation PAC(k) measures
the correlation of values that are k periods apart after removing the correlation from the
intervening lags. If the pattern of autocorrelation can be captured by an autoregtession of order
less than k, then the partial autocorrelation at lag k will be close to zero. Ljung-Box Q-statistics
and their p-values at lag k have the null hypothesis that there is no autocorrelation up to order
k. The dotted lines in the plots of the autocorrelations are the approximate two standard error
bounds. If the autocorrelation is within these bounds, it is not significantly different from zero
at the 5% significance level.

Autocorrelation measures the relationship to the past of the dependent Y variable to itself.
Distributive lags, in contrast, are time-lag relationships between the dependent Y variable and
different independent X variables. For instance, the movement and direction of mortgage rates
tend to follow the federal funds rate but at a time lag (typically 1 to 3 months). Sometimes, time
lags follow cycles and seasonality (e.g., ice cream sales tend to peak during the summer months
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and are, hence, related to last summer’s sales, 12 months in the past). The distributive lag
analysis (Figure 5.24) shows how the dependent variable is related to each of the independent
variables at various time lags, when all lags are considered simultaneously, to determine which
time lags are statistically significant and should be considered.

ABTUKUDDE.‘J_\HL\HH

BpemenHan sapepmk: AC PAC Hushsa rpaHuya  Bepxxas rpaduua  O-cTaTucTnka Prob
1 0.0580 0.0580 -0.2828 0.2828 0.1786 0.6726
2 -01213  -0.1251 -0.2828 0.2828 09754 0.6140 AC PAC
3 0.0590 0.0756 -0.2828 0.2828 1.1679 0.7607
4 0.2423 0.2232 -0.2828 0.2828 44865 0.3442
5 0.0067 -0.0078 -0.2828 0.2828 4.4890 0.4214
g -0.2654  -0.2345 -0.2828 0.2828 8.6516 0.1941
7 0.0814 0.0939 -0.2g28 0.2828 9.0524 0.2489
g 0.0634 -0.0442 -0.2828 0.2828 9.3012 0.3175
9 0.0204 0.0673 -0.2828 0.2828 9.3276 0.4076
10 -0.0190 0.02865 -0.2828 0.2828 9.3512 0.4991
1 0.1035 0.0790 -0.2828 0.2828 10.0648 0.5246
12 0.1658 0.0978 -0.2828 0.2828 11.9466 0.4500
13 -0.0524  -0.0430 -0.2828 0.2828 121384 0.5162
14 -0.2050 -0.2523 -0.2828 0.2828 151738 0.3664
15 01782 0.2089 -0.2828 0.2828 17.5315 0.2881
16 -0.1022 -0.2591 -0.2828 0.2828 18.3296 0.3050
7 -0.0861 0.0808 -0.2828 0.2828 18.9141 0.3335
18 0.0418 0.1987 -0.2828 0.2828 19.0559 0.3384
19 0.0269 -0.0821 -0.2828 0.2828 19.6894 0.4135
20 -0.0091 -0.0269 -0.2828 0.2828 19.6966 0.4770

L

Janepwkn pacnpeneneHus

P-aHaqeHua nepuogoBe 3afeper pacnpedenedHua ana Kaxn 0i HeaaencuMoi I'IEpBMBHHDﬁ

Variable 1 2 3 4 5 6 7 8 9 10 " 12
x1 0.3467 0.2045 0.3336 0.9105 0.9757 0.1020 0.9205 0.1267 0.5431 0.9110 0.7495 0.4016
X2 0.6077 0.9900 0.9422 0.2851 0.0638 0.0032 0.8007 0.18651 0.4823 0.1126 0.0519 0.4333
X3 07384 0.2396 0.2741 0.8372 0.9608 0.0464 0.8355 0.0545 0.6828 0.7354 0.5093 0.3500
X4 0.0061 0.6738 07932 07719 06748 0.8627 0.5586 0.9046 0.5726 0.6304 0.4812 0.5707
X5 0.1591 0.2032 0.4123 0.5509 0.64716 0.3447 0.9190 0.9740 0.5185 0.2856 0.1489 0.7794

Figure 5.24 — Autocorrelation and Distributive Lag Results

Another requirement in running a regression model is the assumption of normality and
sphericity of the error term. If the assumption of normality is violated or outliers are present,
then the linear regression goodness-of-fit test may not be the most powerful or informative test
available, and this could mean the difference between detecting a linear fit or not. If the errors
are not independent and not normally distributed, it may indicate that the data might be
autocorrelated or suffer from nonlinearities or other more destructive errors. Independence of
the errors can also be detected in the heteroskedasticity tests (Figure 5.25).

The Normality test on the errors performed is a nonparametric test, which makes no
assumptions about the specific shape of the population, from which the samples are drawn,
allowing for smaller sample data sets to be analyzed. This test evaluates the null hypothesis of
whether the sample errors were drawn from a normally distributed population, versus an
alternate hypothesis that the data sample is not normally distributed. If the calculated D-statistic
is greater than or equal to the D-critical values at various significance values, then reject the null
hypothesis and accept the alternate hypothesis (the errors are not normally distributed).
Otherwise, if the D-statistic is less than the D-critical value, do not reject the null hypothesis
(the errors are normally distributed). The Normality test relies on two cumulative frequencies:
one derived from the sample data set and the second from a theoretical distribution based on
the mean and standard deviation of the sample data.
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MNpoBepka Ha HOPManbHOCTb M CHEPUYHOCTE OWNGOK

Ewe ogHum TpeGoBaHMemM NpW CO30AHUM MOLENW PETPECCMW ABMNAESTCA OOMYWEHWE 0 HOPMANBHOCTM W CPEPUYHOCTH OCTATOUHOTD YNeHa. EcnW QonyWeHue o
HOPMANEHOCTH HAPYWAETCA MW NPWCYTCTEYIOT BEINAGAKWWE 3HAYEHWA, TO NPOBEPKA KPUTEPWA COMACcHA NWHERHOR perpeccii GYGET He CaMbIM 3 BHEKTHEHEIM U
MH OPMATHEHBIM METOLOM, 3 3T0 MOMET BNWATE HA TO, CNEYeT MW ONPEAENATE NUHEAHOE NPUENMKEHNE UK HET. ECNK owWEKN He ABNAKTCA HE3ABMCHMBEIMI 1
HOPMaNEHO PACTPEReneHHEIMN, 3TO MOMET CEMAETENLCTEOEAT O TOM, 4TO AAHHLIE SETOKOPPENMPOBaHE!, MNG0 HA HUX ENMWAKDT HEMWHERHOCTH UK npoune Gonee
cepbesHble oWwnBkKn. He3aencuMocTs ownGoK MOXHO YCTAHOBMTE MPH NOMOLLM NPOEEPKA TETEPOCKEAACTUYHOCTH (CM. OTYET 0 AWATHOCTHKE).

MpoEepKa HOPMANEHOCTH ABMNASTCA BMAOM HENapaMeTpUUECKoro KPUTEPHA, NPW NOMOLW KOTOPOMD HE ASNAETCA AOMYWEHWA OTHOCHTENEHO KOHKPETHON HopMbl
COBOKYMHOCTH, 0TKyOA GepeTcA BeiGopKa, YTO NO3BONAET NPOBOONTE AHAMW3 MEHBWMWK MACCHECE JAHHE. MpW 3Tl NPOBEPKE OLEHWBAETCA HYMEBAA TMNOTE3d O
TOM, GbINa MW B3ATA BLIGOPKA AAHHLE W3 HOPMANEHO PacnpefeneHHoil COBOKYTHOCT, NMWG0 0ASTCA OUEHKA anbTepHATMEHON MMNoTe3e, KOTOPAaA 3aKMOYasTcA B
TOM, 4TO EbIGOPKA QaHHLIX HE ABMNAETCA HOPMaNkHO pacnpegensHHoi. Ecnv Bsluncneqtan D-cTatncTika GonblWe WNK paBHa KpUTWYECKOMY 3HaueHwo D npw
pa3HLIX IHAYSHWAX 3HAYMMOCTH, CTIEOYeT OTEEPTHYTE HYMEEVKD TMMOTE3Y W NPUHATE ANbTEPHATMEHYI (OWWBKW HE AEMAKITCA HOPMANLHO pacnpefeneHHsiMu). B
MpoTMEHOM  Cyyae, ecnw D-CTaTMCTMKA MEeHBWE KPWUTWYECKOTD 3HauednA D, HyNeEan IMNoTesa He OTEEpraeTcA (OWWOKW ABNAKTCA  HOPMANbHD
pacnpedeneHHbIMK). 3Ta NpoBepka Ga3npyETCA HA JBYX HAKONMNEHHLIX YACTOTAX, NOMYYEHHON M3 BEIGOPOYHOTD MACCMEA QAHHLIX, NOMYYEHHOR W3 TEOPETUYECKOTD
pacnpegeneHiA, 0CHOBAHHOTD Ha CPEOHEM W CTAHOAPTHOM OTKNOHEHWN B DaHHLIX BEIGODKN.

Pe3ynbTaThl NpoBEpKU

Ownbkn OmHocurens Habnwgaemana Oxugaeman O-E
CpegHee oWKWOOK perpeccin 0.00 HaA 4acToTa

CTaHgapTHOE OTKNOHEHWE oWKOoK 141.83 -219.04 0.02 0.02 0.0612 -0.0442
Cratnctuka D 0.1036 -202.53 0.02 0.04 0.0766 -0.0366
KpuTnyeckoe aHayeHuwe D Ha ypoeHe 1% 01138 -186.04 002 008 00848 -0.0348
Kputyeckoe aHayeHne D Ha ypoBeHe 5% 01225 -17447 002 0.08 01087 -0.0257
KpuTuyeckoe aHayeHwe D Ha ypoBHe 10% 01456 -162.13 002 010 01265 -0.0265
Hyneeana runotesa; Owwikn pacnpegeneHdsl HOPManeHo. -161.62 0.02 012 01272 -0.0072
-160.39 0.02 014 012591 0.0108
Conclusion: The errors are normally distributed at the 1% alpha -145.40 002 016 015286 0.0074
level. -138.92 0.02 0.18 0.1637 0.0163
-133.81 0.02 0.20 0.1727 0.0273
-120.76 0.02 022 01573 0.0227
-120.12 0.02 024 01985 00415
-113.25 0.02 0.26 0.2123 0.0477

Figure 5.25 — Test for Normality of Errors

Sometimes, certain types of time-series data cannot be modeled using any other methods
except for a stochastic process, because the undetlying events are stochastic in nature. For
instance, you cannot adequately model and forecast stock prices, interest rates, price of oil, and
other commodity prices using a simple regression model because these vatiables are highly
uncertain and volatile, and they do not follow a predefined static rule of behavior; in other
words, the process is not stationary. Stationarity is checked using the Runs Test function, while
another visual clue is found in the autocorrelation report (the ACF tends to decay slowly). A
stochastic process is a sequence of events or paths generated by probabilistic laws. That is,
random events can occur over time but are governed by specific statistical and probabilistic
rules. The main stochastic processes include random walk or Brownian motion, mean-
reversion, and jump-diffusion. These processes can be used to forecast a multitude of variables
that seemingly follow random trends but restricted by probabilistic laws. The process-
generating equation is known in advance but the actual results generated are unknown (Figure
5.20).

The Random Walk Brownian Motion process can be used to forecast stock prices, prices of
commodities, and other stochastic time-series data given a drift or growth rate and volatility
around the drift path. The Mean-Reversion process can be used to reduce the fluctuations of
the Random Walk process by allowing the path to target a long-term value, making it useful for
forecasting time-series variables that have a long-term rate such as interest rates and inflation
rates (these are long-term target rates by regulatory authotities or the matket). The Jump-
Diffusion process is useful for forecasting time-series data when the variable can occasionally
exhibit random jumps, such as oil prices or price of electricity (discrete exogenous event shocks
can make prices jump up or down). These processes can also be mixed and matched as
required.
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A note of caution is required here. The stochastic parameters calibration shows all the
parameters for all processes and does not distinguish which process is better and which is
worse or which process is more appropriate to use. It is up to the user to make this
determination. For instance, if we see a 283% reversion rate, chances are, a mean-reversion
process is inappropriate; or a very high jump rate of, say, 100% most probably means that a
jump-diffusion process ~ is probably not appropriate; and so forth. Further, the analysis
cannot determine what the variable is and what the data source is. For instance, is the raw data
from historical stock prices or is it the historical prices of electricity or inflation rates or the
molecular motion of subatomic particles, and so forth. Only the user would know about the
raw data, and, hence, using a priori knowledge and theory, be able to pick the correct process to
use (e.g., stock prices tend to follow a Brownian motion random walk, whereas inflation rates
follow a mean-reversion process; or a jump-diffusion process is more appropriate should you
be forecasting the price of electricity).

Stochastic Process

CratucTrieckan CnpaskKa

[lanee npuBejeHbl OlEHNBAEMbIE NapaMeTpsl ANA CTOXACTMYECKOTO NPOLECCa HA OCHOBAHWK YKA3aHHbIX AaHHbX. [l0Mb3oBaTens AOMkeH pelats,
ABNAETCA NN BEPOATHOCTE COMMACHA (2HANOTMYHO BLIYMCTEHWNK KPUTEPUA COMMACHA) AOCTATOWHON rapaHTMei WCNONE30BaHNA MPOTHO3a CTOXACTHYECKOrD
npouecca, u, ecnu AenAeTcA, byaer nu ato cnydaiHeim Byxkaannem, mogensia ckadkoobpasioi gnddysnm unm nx couetanmenm lNpn Boibope BepHoi
MOAENK CTOXACTMYECKOro MPOLECcca CeAyeT UCXOAWTE W3 NPOLUNOTO ONbITa, 3 TAakxe anpUOPHLIX SKOHOMUYECKUX W (HHAHCOBLIX NPEANONoKEHil, yem
Oyner Haumyulwwnm obpa3om NpeAcTaBneH WCXOAHEIT MACCMB AaHHLIX. 3TW NapameTpsl MOMXHO BBECTW B NPOTHO3 CTOXacTWuyeckoro npordoaa (Risk
Simulator | MpordoanpoBanue | CToxacTHYeckne NpoLgcesl).

Mepropnueckne
YpoeeHs aperda -1.48% YposeHb pesepcun  283.89% YpoBeHb ckaukoe  20.41%
BonatuneHocTe  88.84% [ONrocpouHoe 3HaueHne  327.72 Pa3mep ckaukop  237.89
BepoATHOCTE BKMIOUEHWUA B CTOXACT  46.48%
BrICOKO® COOTBETCTEIME CBMOETENECTBYET O TOM, 4T CTOX3CTMYECKAR MOAESME MyyWwe oBWenpUHATEX Mogenei
MoneiTiu 20 CraHgapTHoe HopmansHoe  -1.7321
MonoxuTensHoe 25 P-3HaueHue (0OHOCTOPOHHE)  0.0416
OTpHuaTenEHoe 235 P-aHayeHwe (DOHOCTOPOHHeE)  0.0B33
OXUOAEMAR NONBITKA 26

Huakoe p-aHaueHie (MeHewe 0,10, 0,05 unu 0,01) 03H3YaeT, YTo NOCNENoBATENEHOCTE HE ABNAETCA CNYYAIHON, CNeN0BaTeN:HO, NOABEPXEHE NPOGNEMaM CTALMCHAPHOCTH. B Takom cnyuas
MONHO NPUMEHNTL Mogent ARIMA. B npoTneHoM criyyae, BLICOKNE P-3H3YEHUA YKA3LIBAIOT HA CYYARHOCTE U MOXHO NPUMEHSATE MOLENH CTOXACTMYECKOro NpoLecca

Figure 5.26 — Stochastic Process Parameter Estimation

Multicollinearity exists when there is a linear relationship between the independent variables.
When this occurs, the regression equation cannot be estimated at all. In near collinearity
situations, the estimated regression equation will be biased and provide inaccurate results. This
situation is especially true when a stepwise regression approach is used, where the statistically
significant independent variables will be thrown out of the regression mix eatlier than expected,
resulting in a regression equation that is neither efficient nor accurate. One quick test of the
presence of multicollinearity in a multiple regression equation is that the R-squared value is
relatively high, while the t-statistics are relatively low.
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Another quick test is to create a correlation matrix between the independent. A high cross-
correlation indicates a potential for autocorrelation. The rule of thumb is that a correlation with
an absolute value greater than 0.75 is indicative of severe multicollinearity.

MaTtpuua nuHeriHoi Koppenauun (Koaddruyment R MNMupcoHa)

X1 X2 X3 X4 X5
Y 0.431 0.395 0.485 0.159 0.248
1 1.000 0.333 0.959 0.242 0.237

K2 1.000 0.349 0.319 0120
K3 1.000 0196 0.227
Kd 1.000 0.290
K5 1.000

P-3Ha4eHuna gna koagduumredTa R MupcoHa

X1 X2 X3 X4 X5
Y 0.002 0.005 0.000 0.270 0.082

X1 MA0.018 0.000 0.090 0.097
K2 Mis 0.013 0.024 0.406
X3 MiA 0172 0,113
X4 Mis 0.041

X5 NIA

MaTtpuua HenwHelHoli Koppenauui (Panm Cnupmeda)

X1 X2 X3 X4 X5
Y 0.495 0.455 0.547 0337 0.273

®1 MiA 0.228 08966 0.638 0172
K2 MiA 0.249 0.357 0.050
X3 MiA 0615 0.205
K4 M 0,341

X5 MNIA

Figure 5.27 — Multicollinearity Errors

The Correlation Matrix lists the Pearson’s Product Moment Cotrelations (commonly referred
to as the Pearson’s R) between variable pairs. The correlation coefficient ranges between —1.0
and + 1.0 inclusive. The sign indicates the direction of association between the variables, while
the coefficient indicates the magnitude or strength of association. The Pearson’s R only
measures a linear relationship and is less effective in measuring nonlinear relationships.

To test whether the correlations are significant, a two-tailed hypothesis test is performed and
the resulting p-value(s) is listed. In Figure 5.27 (top), P-values less than 0.10, 0.05, and 0.01 are
highlighted in blue to indicate statistical significance. In other words, a p-value for a correlation
pair that is less than a given significance value is statistically significantly different from zero,
indicating that there is significant a linear relationship between the two variables.

The Pearson’s R between two variables (x and y) is related to the covariance (cov) measure,

Ccov

where: Ry, =—2%  The benefit of dividing the covatiance by the product of the two
SxSy

variables’ standard deviation (s) is that the resulting correlation coefficient is bounded between

—1.0 and +1.0 inclusive. This makes the correlation a good relative measure to compare among

144 |Page



Procedure

RISK SIMULATOR

different variables (particularly with different units and magnitude). The Spearman rank-based
nonparametric correlation is also included in the report. The Spearman’s R is related to the
Pearson’s R in that the data is first ranked and then correlated. The rank correlation provides a
better estimate of the relationship between two vatiables when one or both of them is
nonlineat.

It must be stressed that a significant correlation does not imply causation. Associations between
variables in no way imply that the change of one variable causes another variable to change.
When two variables that are moving independently of each other but in a related path, they may
be correlated but their relationship might be sputious (e.g., a correlation between sunspots and
the stock market might be strong, but one can surmise that there is no causality and that this
relationship is purely sputious). Another test for multicollinearity is the use of the variance
inflation factor (VIF), obtained by regressing each independent variable to all the other
independent variables, obtaining the R-squared value, and calculating the VIF. A VIF exceeding
2.0 can be considered as severe multicollinearity. A VIF exceeding 10.0 indicates destructive
multicollinearity (Figure 5.27, bottom).

5.9 HacrpymeHT CTAaTHCTHYECKOIO aHAAH3A

Another very powerful tool in Risk Simulator is the Statistical Analysis tool, which determines
the statistical properties of the data. The diagnostics run include checking the data for various
statistical properties, from basic descriptive statistics to testing for and calibrating the stochastic
properties of the data.

e Open the example model (Risk Simulator | Examples | Statistical Analysis), go to the
Data worksheet, and select the data including the variable names (cells C5:£55).

o Click on Risk Sinlator | Tools | Statistical Analysis (Figure 5.28).

e Check the data type, whether the data selected are from a single variable or multiple
variables arranged in rows. In our example, we assume that the data areas selected are

from multiple variables. Click OK when finished.
e Choose the statistical tests you wish to perform. The suggestion (and by default) is to
choose all the tests. Click OK when finished (Figure 5.29).

Spend some time going through the reports generated to get a better understanding of the
statistical tests performed (sample reports are shown in Figures 5.30 through 5.33).
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WecxopHbIil maccuse JKOHOMETPHWYEeCKNX OaHHbIX

A X1 X2 X3 x4 5
521 18308 185 4.041 79.6 7.2
367 1148 600 0.55 1 8.5
443 18068 372 3.665 323 KT
365 7729 142 2351 451 73
i '
g;g 11%[;;884 g‘;ﬁ @ CratucTiuecknii aHanus @M
286 14630 346 3TOT MHCTPYMEHT WCTIONB3YETCA ANA OMWCEHMA M HEXOXKOEHWA CTATHCTHHECKMK
397 4008 328 B33UMOCTHOLWEHWA B MaccHBe HBD'EDE'EDTEHHI:IX OAHHLX MYyTEM NPOBEDKW W NPMMEHEHMA
ONWCETENEHOM CTETUCTHKM, NPOBEPKM THNCTES I, NOADOPE PECNPELENEHIA, NPOBEPKK

764 38927 354 HOPMENEHOCTH, CE30HHOCTH, SHANKIE TPEHGOE, SETOKOPPENALMM M HEMMHEAHELX
427 22322 266 rogened. TaKXEe OH NOMOrSET NpKH CLEHKE W KENWOPOBKE CTOXACTHUECKHX NapaMETPoOE

143 inm 320 HEiifie
231 3136 197 BriSpantbie oakHbie
524 50508 266 A b e -
328 23886 173 521 18308 185 H
240 16996 190 367 1148 500 i
286 13035 239 443 18068 372
285 12973 130 365 7729 142
569 16309 241 A14 100484 432

96 5227 189 385 16728 2490
498 19235 358 286 14630 346
481 44487 315 397 4008 328
468 44213 303 764 38927 354

177 23619 228 427 22322 266 -
198 9106 134
458 24917 189 @) Nattible u3 ooHoM nepemetHoi
;3_2 :11 @ ia;nm;:ﬂifkm;mnmmo NEPEMERHEIX,
29 2373 M7 =

68 7128 233 1109 1237 T2
3N 23624 349 7.73 1042 6.6

Figure 5.28 — Running the Statistical Analysis Tool

' Y
E CTaTMCTUYECKIIA aHaNWS &J

Beifop BEINONHASMOrD @HanWsa:

Brinontmte:  |Boe nposepki ﬂ [¥ DueHKa NapaMeTpoB CTOXACTUYECKIX MPOLECCOE
v OnucaTtensHaa cTETMCTMKE MepuognyHocTs ExeronHo j
[V TMonSop nepemeHHLE ANA pacrpeneneHn ¥ AsToKOppEnALMA BpEMEHHLI PRODE

* MocneppeatensHeie  © JWckpeTHeie

V' TucTorpamma u rpadikia CezoHHOCTE (Nepyogos,Lwknos) 4 3:
¥ MMpoeepka runoTess MporHos (nepuonos) 4 3:
ManoTeTmueckoe cpegHes 0 ¥ TIpoSKWAR NHHAM TREHIA

[¥ HenuHeidiHan skcTpanonaLwia
Mportos (nepronos) | 4 El: [+ Marm Tpennos
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Figure 5.29 — Statistical Tests

146 | P age



RISK SIMULATOR

Descriptive Statistics

Analysis of Statistics

Almost all distributions can be described within 4 moments (some distributions require one moment, while others require two moments, and so forth). Descriptive statistics
quantitatively capture these moments. The first moment describes the location of a distribution (i.e., mean, median, and mode) and is interpreted as the expected value, expected
returns, or the average value of occurrences

The Arithmetic Mean calculates the average of all accurrences by summing up all ofthe data points and dividing them by the number of points. The Geometric Mean is calculated by
taking the power root of the products of all the data points and requires them to all be positive. The Geometric Mean is more accurate for percentages or rates that fluctuate
significantly. For example, you can use Geometric Mean to calculate average growth rate given compound interest with variable rates. The Trimmed Mean calculates the arithmetic
average of the data set after the extreme outliers have been timmed. As averages are prone to significant bias when outliers exist, the Trimmed Mean reduces such bias in skewed
distributions

The Standard Error of the Mean calculates the error surrounding the sample mean. The larger the sample size, the smaller the error such that for an infinitely large sample size, the
error approaches zero, indicating that the population parameter has been estimated. Due to sampling errors, the 95% Confidence Interval for the Mean is provided. Based on an
analysis of the sample data points, the actual population mean should fall between these Lower and Upper Intervals for the Mean

Median is the data point where 50% of all data points fall above this value and 50% below this value. Among the three first moment statistics, the median is least susceptible to
outliers. A symmetrical distribution has the Median equal to the Arithmetic Mean. A skewed distribution exists when the Median is far away from the Mean. The Mode measures the
most frequently occurring data point.

Minimum is the smallestvalue in the data set while Maximum is the largest value. Range is the difference between the Maximum and Minimum values

The second moment measures a distribution’s spread or width, and is frequently described using measures such as Standard Deviations, Variances, Quartiles, and Inter-Quartile
Ranges. Standard Deviation indicates the average deviation of all data points from their mean. Itis a popular measure as is associated with risk (higher standard deviations mean a
wider distribution, higher risk, or wider dispersion of data points around the mean) and its units are identical to original data sets. The Sample Standard Deviation differs from the
Population Standard Deviation in that the former uses a degree of freedom correction to account for small sample sizes. Also, Lower and Upper Confidence Intervals are provided for
the Standard Deviation and the true population standard deviation falls within this interval. If your data set covers every element of the population, use the Population Standard
Deviation instead. The two Variance measures are simply the squared values of the standard deviations

The Coefficient of Variability is the standard deviation of the sample divided by the sample mean, proving a unit-free measure of dispersion that can be compared across different
distributions (you can now compare distributions of values denominated in millions of dollars with one in billions of dollars, or meters and kilograms, etc.). The First Quartile
measures the 25th percentile of the data points when arranged from its smallest to largest value. The Third Quartile is the value of the 75th percentile data point Sometimes
quartiles are used as the upper and lower ranges of a distribution as it truncates the data set to ignore outliers. The Inter-Quartile Range is the difference between the third and first
quartiles, and is often used to measure the width of the center of a distribution

Skewness is the third moment in a distribution. Skewness characterizes the degree of asymmetry of a distribution around its mean. Positive skewness indicates a distribution with
an asymmetric tail extending toward more positive values. Negative skewness indicates a distribution with an asymmetric tail extending toward more negative values.

Kurtosis characterizes the relative peakedness or flatness of a distribution compared to the normal distribution. 1t is the fourth moment in a distribution. A positive Kurtosis value
indicates a relatively peaked distribution. A negative kurtosis indicates a relatively flat distribution. The Kurtosis measured here has been centered to zero (certain other kurtosis
measures are centered around 3.0). While both are equally valid, centering across zero makes the interpretation simpler. A high positive Kurtosis indicates a peaked distribution
around its center and leptokurtic or fat tails. This indicates a higher probability of extreme events (e.g., catastrophic events, terrorist attacks, stock market crashes) than is predictedin
a normal distribution

Summary Statistics

Sratistics Variable X1

Observations 30.0000 Standard Deviation (Sample) 1729140
Arithmetic Mean 331.9200 Standard Deviation (Population) 171.1761
Geometric Mean 281.3247 Lower Confidence Interval for Standard Deviation 148.6090
Trimmed Mean 3251738 Upper Confidence Interval for Standard Deviation 207.7947
Standard Error of Arithmetic Mean 24.4537 Variance (Sample) 28885 2588
Lower Confidence Interval for Mean 283.0125 Variance (Population) 29301.2735
Upper Confidence interval for Mean 380.8275 Coefficient of Variability 05210
Median 307.0000 First Quartile (Q1) 204.0000
Mode 47.0000 Third Quartile (Q3) 441.0000
Mirirmuim 764.0000 Inter-Quartile Range 237.0000
Maximum 717.0000 Skewness 04838
Range Kurtosis -0.0852

Figure 5.30 — Sample Statistical Analysis Tool Report
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Hypothesis Test (t-Test on the Population Mean of One Variable)

Statistical Summary

Statistics from Dataset: Calculated Statistics:
Observations a0 t-Statistic 135734
Sample Mean 331.92 P-Value (right-tail) 0.0000
Sample Standard Deviation 17291 P-Value (lefi-tailed) 1.0000
P-Value ftwo-tailed) 0.0000
User Provided Statistics:
Null Hypothesis (Ho): 4 = Hypothesized Mearn
Hypothesized Mean 0.00 Alternate Hypothesis (Ha): <= Hypothesized Mean

Notes: "=="denotes "greater than"for right-tail, "less than" for lef-
tail, or "not equal to" for two-tail hypothesis tests.

Hypothesis Testing Summary

The one-variable t-test is appropriate when the population standard deviation is not known but the sampling distribution is assumed to be
approximately normal (the ttest is used when the sample size is less than 30 butis also appropriate and in fact, provides more conservative
results with larger data sets). This t-test can be applied to three types of hypothesis tests: a two-tailed test, a right-tailed test, and a lefi-tailed test. All
three tests and their respective results are listed below for your reference.

Two-Tailed Hypothesis Test

Atwo-tailed hypothesis tests the null hypothesis Ho such that the population mean is statistically identical to the hypothesized mean. The alternative
hypothesis is that the real population mean is statistically different from the hypothesized mean when tested using the sample dataset Using at-
test, if the computed p-value is less than a specified significance amount (typically 0.10, 0.05, or 0.01), this means that the population mean is
statistically significantly different than the hypothesized mean at 10%, 5% and 1% significance value (or at the 90%, 95%, and 99% statistical
confidence). Conversely, if the p-value is higher than 0.10, 0.05, or 0.0, the population mean is statistically identical to the hypothesized mean and
any differences are due to random chance

Right-Tailed Hypothesis Test

Aright-tailed hypothesis tests the null hypothesis Ho such that the population mean is statistically less than or equal to the hypothesized mean. The
alternative hypothesis is that the real population mean is statistically greater than the hypothesized mean when tested using the sample dataset
Using a ttest, if the p-value is less than a specified significance amount typically 0.10, 0.08, or 0.01), this means that the population mean is
statistically significantly greater than the hypothesized mean at 10%, 5% and 1% significance value (or 90%, 95%, and 99% statistical confidence).
Conversely, if the p-value is higher than 0.10, 0.05, or 0.0, the population mean is statistically similar or less than the hypothesized mean.

Lefi-Tailed Hypothesis Test

A leftdailed hypothesis tests the null hypothesis Ho such that the population mean is statistically greater than or equal to the hypothesized mean.
The alternative hypothesis is thatthe real population mean is stafistically less than the hypothesized mean when tested using the sample dataset.
Using a ttest, if the p-value is less than a specified significance amount typically 0.10, 0.08, or 0.01), this means that the population mean is
statistically significantly less than the hypothesized mean at 10%, 5%, and 1% significance value (or 90%, 95%, and 99% statistical confidence).
Conversely, if the p-value is higher than 0.10, 0.05, or 0.01, the population mean is statistically similar or greater than the hypothesized mean and
any differences are due ti random chance

Because the +testis more conservative and does not require a known population standard deviation as in the Z-test, we only use this ttest.

Figure 5.31 — Sample Statistical Analysis Tool Report (Hypothesis Testing of One Variable)
Test for Normality

The Nermality test is a form of nonparametric test, which makes no assumptions aboutthe specific shape ofthe population frem which the
sample is drawn, allowing for smaller sample data sets to be analyzed. This test evaluates the null hypothesis of whether the data sample
was drawn fram a normally distributed population, versus an alternate hypothesis that the data sample is not normally distributed. If the
calculated p-value is less than or equal to the alpha significance value then reject the null hypothesis and acceptthe alternate hypothesis.
Otherwise, if the p-value is higher than the alpha significance value, do not reject the null hypothesis. This test relies on two cumulative
frequencies: one derived from the sample data set, the second from a theoretical distribution based on the mean and standard deviation of
the sample data. An alternative to this test is the Chi-Square test for normality. The Chi-Square test requires more data points to run
compared to the Mormality test used here

Test Result

pata FERUVC  hcerved Expeced O
Data Average 331.92 Freguency

Standard Deviation 172.91 47.00 0.02 0.02 0.0497 -0.0297
D Statistic 0.0859 68.00 a.02 0.04 0.0633 -0.0235
D Critical at 1% 0.1150 §7.00 0.02 0.06 0.0783 -0.0183
D Critical at 5% 0.1237 96.00 0.02 0.08 0.0862 -0.0082
D Critical at 10% 0.1473 102.00 0.02 o.10 0.0918 0.0082
Mull Hypothesis: The data is normally distributed. 108.00 a.02 012 Q.0977 0.0223
114.00 0.02 014 0.1038 0.0362
Conclusion: The sample data is normally distributed at 127.00 0.02 0.16 0.1130 0.0420
the 1% alpha level. 133.00 a.02 018 0.1504 0.0296
177.00 0.02 0.20 0.1851 00149
186.00 0.02 0.22 0.1994 0.0206
186.00 a.02 0.24 0.2026 0.0374
198.00 0.02 0.26 0.2193 0.0407
222.00 0.02 0.28 0.2625 0.0175
231.00 0.02 0.30 0.2797 0.0203
240.00 a.02 0.32 0.2973 0.0225
246.00 0.02 0.34 0.30968 0.0304
251.00 0.02 0.36 0.3199 0.0401
263.00 a.02 0.38 0.3484 0.0306
280.00 0.02 0.40 0.3820 00180
285.00 0.02 0.42 0.3931 0.0269
286.00 Q.04 0.46 0.3933 0.0647
291.00 0.02 0.48 0.4085 00735
3203.00 0.02 0.50 0.4336 0.0664
311.00 a.02 0.52 0.4518 0.0661

Figure 5.32 — Sample Statistical Analysis Tool Report (Normality Test)
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Stochastic Process - Parameter Estimations

Statistical Summary

A stochastic process is a sequence of events or paths generated by probabilistic laws. That is, random events can occur over time but are governed by
specific statistical and probabilistic rules. The main stochastic processes include Random Walk or Brownian Motion, Mean-Reversion, and Jump-
Diffusion. These processes can be used to forecast a multitude of variables that seemingly follow random trends but yet are restricted by probabilistic
laws. The process-generating equation is known in advance but the actual results generated is unknown

The Random Walk Brownian Motion process can be used to forecast stock prices, prices of commeodities, and other stochastic time-series data given a
drift or growth rate and a volatility around the drift path. The Mean-Reversion process can be used to reduce the fluctuations of the Random Walk process
by allowing the path to target a long-term value, making it useful for forecasting time-series variables that have along-term rate such as interest rates and
inflation rates (these are long-term target rates by regulatory authorities or the market). The Jump-Diffusion process is useful for forecasting time-series
data when the variable can occasionally exhibit random jumps, such as oil prices or price of electricity (discrete exogenous event shocks can make prices
jump up or down). Finally, these three stochastic processes can be mixed and matched as required.

Stochastic Process

Statistical Summary

The following are the estimated parameters for a stochastic process given the data provided. It is up to you to determine ifthe probability of fit (similar to a
goodness-of-fit computation) is sufficient to warrant the use of a stochastic process forecast, and if so, whether it is a random walk, mean-reversion, or a
jump-diffusion model, or combinations thereof. In choosing the right stochastic process model, you will have to rely on past experiences and a priori
economic and financial expectations of what the underlying data set is best represented by. These parameters can be entered into a stochastic process

forecast (Simulation | Fors ing | ic Pr ).
(Annualized)
Drift Rate 5.66% Reversion Rate A Jump Rate 16.33%
Volatility 7.04% Long-Term Value MA Jump Size 2133

Probability of stochastic model fit 463%

Figure 5.33 — Sample Statistical Analysis Tool Report (Stochastic Parameter Estimation)

5.10 HuctpymeHT aHAAH3a PACITIPEACACHHH

The Distributional Analysis tool is a statistical probability tool in Risk Simulator that is useful in
a variety of settings. It can be used to compute the probability density function (PDF), which is
also called the probability mass function (PMF) for discrete distributions (these terms are used
interchangeably), where given some distribution and its parameters, we can determine the
probability of occurrence given some outcome x. In addition, the cumulative distribution
function (CDF) can be computed, which is the sum of the PDF values up to this x value.
Finally, the inverse cumulative distribution function (ICDF) is used to compute the value x
given the cumulative probability of occurrence.

This tool is accessible via Risk Sinmulator | Tools | Distributional Analysis. As an example of its use,
Figure 5.34 shows the computation of a binomial distribution (i.e., a distribution with two
outcomes, such as the tossing of a coin, where the outcome is either Head or Tail, with some
prescribed probability of heads and tails). Suppose we toss a coin two times. Setting the
outcome Head as a success, we use the binomial distribution with Trials = 2 (tossing the coin
twice) and Probability = 0.50 (the probability of success, of getting Heads). Selecting the PDF
and setting the range of values x as from 0 to 2 with a step size of 1 (this means we are
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requesting the values 0, 1, 2 for x), the resulting probabilities, as well as the theoretical four
moments of the distribution, are provided in tabular and in graphical formats. As the outcomes
of the coin toss are Heads-Heads, Tails-Tails, Heads-Tails, and Tails-Heads, the probability of
getting exactly no Heads is 25%, one Head is 50%, and two Heads is 25%. Similarly, we can
obtain the exact probabilities of tossing the coin, say, 20 times, as seen in Figure 5.35.

F
AHanws pacnpegeneHna

“3TOT MHCTPYMEHT COSAET QEYHKLIAD NNOTHOCTH
BEPOATHOCTH B pacnpenenssvm (PDF), ( 0.50
KyMYNATUBHYHC @yHikumio pacnpenenetna (CDF) w
OBPETHYID KYMYNATHEHYHD CyHKLMKD PECNPENENEHIA
(ICDF) ona Bcex pacnpenenehwii B npunoxern Risk 0.40
Simulator, BKNIOYEA TEOPETHUECKME MOMEHTH W
DWEIPEMMY BEPOATHOCTH. 030
Pacnpenenetne [EMHOMHEnhHOe v] '
[MNonbimkW |2 | 020
BepoaThocTe |ﬂ.5 | 010
| | 0.00:

THN SUEMPEMMEL PDF Tl % or or
Tun PDF & CDF = b 0000000 0.250000 0.250000
FopnaTIRoRe (0000000 | ;DDDDDD g'zsmm ?EDDDDD
() Daro sHaueHwe

Walue X | |
@ [uanazoH sHaueHwid

Hicxhar rpatmua |D |

Bepxnan rpakuua |2 |

Pasmep atana

Figure 5.34 — Distributional Analysis Tool (Binomial Distribution with 2 Trials)

Figure 5.36 shows the same binomial distribution for 20 trials, but now the CDF is computed.
The CDF is simply the sum of the PDF values up to the point x. For instance, in Figure 5.35,
we see that the probabilities of 0, 1, and 2 are 0.000001, 0.000019, and 0.000181, whose sum is
0.000201, which is the value of the CDF at x = 2 in Figure 5.36. Whereas the PDF computes
the probabilities of getting exactly 2 heads, the CDF computes the probability of getting no
more than 2 heads or up to 2 heads (or probabilities of 0, 1, and 2 heads). Taking the
complement (i.e., 1 — 0.00021) obtains 0.999799, or 99.9799%, which is the probability of
getting at least 3 heads or more.
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r Y
@ AHanws pacnpegensHuA E@g
3TOT MHCTPYMEHT COSAZET Gy HKLIMIO NMOTHOCTH " 2
BEPOATHOCTH B pacnpenenetum (POF), "1}_13 Mean = 10.0000 )
KYMyATUEHYIO Gy kLo pacnpepenetna (COF) n Stdev = 2.2361
OBPATHYID Ky MYIATMBHYID Gy HKLIMIO PECNPEREneHR 0.18 Skewness = 0.0000
{ICDF) ana Boex pacnpensnekuit 8 npunoxenin Risk 0.14 Kurtosis = -0.1000

Simulator, BKNOYER TEOPETHYECKIWE MOMERTHI W ’
[MErpamMmMy BEPOATHOCTH. 012
Pacnpenenshie [EHHOMHEIJ‘IbHOE - 0.10
0.08
Monkimem 20 oo
BepoaThocTs 05 0.04
0.02
0.00-
2 -] 10 14 18
‘- e
THIN QMErpaMmMel [PDF v] X BOF COF
Thn [PDF &CDF '] 0.000000 0.000001 0.000001
PR 0.000000 1.000000 0.0000713 0.000020
2.000000 0.000181 0.000201
() Onro 3Haustne 3.000000 0.001087 0.001288
4.000000 0.004621 0.005%09
Lrss 5.000000 0.014785 0.020695
@ [wanason sHaveH £.000000 0.036964 0.057659
0 7.000000 0.073929 0.131588
SRR 8.000000 0.120134 0.251722
Bepxtan rpatmus 20 5.000000 0160179 0.411501
1 10.000000 0176157 0.588099
TEEEIEETE 11.000000 0.160179 0.748278
12.000000 0120134 0.868412
13.000000 0.073525 0.942341
14.000000 D.DBB?B’J 0.573305
15.000000 0.014786 0.994091
16.000000 0.004621 0.95%8712
17.000000 0.001087 0.939799
18.000000 0.000181 0.995980
15.000000 0.000019 0.999999
20.000000 0.000001 1.000000
————————————

Figure 5.35 — Distributional Analysis Tool (Binomial Distribution with 20 Trials)

Using this Distributional Analysis tool in Risk Simulator, even more advanced distributions can
be analyzed, such as the gamma, beta, negative binomial, and many others. As further example
of the tool’s use in a continuous distribution and the ICDF functionality, Figure 5.37 shows the
standard normal distribution (normal distribution with a mean of zero and standard deviation
of one), where we apply the ICDF to find the value of x that corresponds to the cumulative
probability of 97.50% (CDF). That is, a one-tail CDF of 97.50% is equivalent to a two-tail 95%
confidence interval (there is a 2.50% probability in the right tail and 2.50% in the left tail,
leaving 95% in the center or confidence interval area, which is equivalent to a 97.50% area for
one tail). The result is the familiar Z-score of 1.96. Therefore, using this Distributional Analysis
tool, the standardized scores for other distributions and the exact and cumulative probabilities
of other distributions can all be obtained quickly and easily.
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—

Figure 5.36 — Distributional Analysis Tool (Binomial Distribution’s CDF with 20 Ttials)

5.11 HacrpymeHT aHAAH3 CLICHAPHEB

The Scenario Analysis tool in Risk Simulator allows you to run multiple scenarios quickly and
effortlessly by changing one or two input parameters to determine the output of a variable.
Figure 5.38 illustrates how this tool works on the discounted cash flow sample model (Model 7
in Risk Simulator’s Example Models folder). In this example, cell G6 (net present value) is
selected as the output of interest, whereas cells C9 (effective tax rate) and C12 (product price)
are selected as inputs to perturb. You can set the starting and ending values to test, as well as
the step size, or the number of steps, to run between these starting and ending values. The
result is a scenario analysis table (Figure 5.39), where the row and column headers are the two

input variables and the body of the table shows the net present values.
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Figure 5.37 — Distributional Analysis Tool (Normal Distribution’s ICDE and Z-Score)
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37

38 CeoBogHeIi NOTOK AeHeXHBIX CPeACTE ANA Tekywen | (51,105.57) | $546.99 | $566.73 | $584.47 |  $603.21 | 5621.36 |  $639.50 |  $657.64 $675.78 §5,444.64

39

40 ‘bunaHcOee!] aHanus

4 Tekywee noToka cpe $528.24 $475.64 $427.77 $384.30 $344.89  $308.92 $276.47 §247.23  $220.91 $1,547.71

42 Tekyuwee aHa4ueHne HHEECTHUMOHHLIX 3aTpaT $500.00 $0.00 $1,134.22 $0.00 $0.00 $0.00 $0.00 $0.00 $0.00 $0.00

43 OuckouTup i nepuop oky 3.47 Years

Figure 5.38 — Scenario Analysis Tool
TABJIMUA AHANWU3A CUEHAPWA

BuixogHan nepemesHan: SGS6 Hauanuhoe anauenue Gazosoro Bapwan  §3,127.87

Mepemennan 8 cronbue: 5C512 Mun: 10 Maxkc: 30 3ran 20 Paswep wara: — HauankHoe sHavexHe Da30BOro BapuaHTa: 510.00

Mepemetinan B CTpoKe: 5C39 Mun: 0.3 Makc: 0.5 3ran - Pazmep wara: 0.01 HayaneHoe sHavenHe GasoBoro BapHaHTa: 40.00%

$10.00 $11.00 $12.00 $13.00 $14.00 $15.00 $16.00 $17.00 $13.00 $19.00 $20.00 $21.00 $22.00 $23.00  $24.00

30.00% 5390433 §4,134.43 5436404  $450364 5432324  §505284  §528244  $551204  §574164  $597124  $6,200.85 $6,430.45 $6,660.05 $6,389.65 $7,119.25
31.00% 5382714 5405346 5427978 $4,506.10 5473242 5495674 5518506 $5,411.39 §5,637.71 55,864.03 $6,090.35 $6,316.67 $6,542.99 56,769.31 $6,995.63
32.00% $3,749.44 $3,972.48 $4,195.52 $4,418.56 54,641.61 $4,864.65 $5,087.69 $5,310.72 $5,53377 $5,756.81 $5,079.85 $6,202.89 $6,425.94 $6,648.98 56,872.02
33.00% $3671.75 $3,801.51 34,111.27 54,331,023 $4,550.79 $4,770.55 $4,990.31 $5,210.07 $5,429.83 $5,649.60 $5,869.36 $6,089.12 $6,308.88 $6,528.64 56,748.40
3400% 5359405 5381053 54,027.01 54,243.49 54,459.97 54,676.45 5480204 $5,100.42 55,325.90 $5,542.38 55,758.86 $597534  $5,191.82 56,408.30 $6,624.79
35.00%  $3516.35 §3,729.55 53,942.76 $4,155.96 34,369.16 $4,582.36 §4,795.56 35,008.76 §5,221.96 $5,435.16 §5,648.36 85,861.57 $6,074.77 $6,287.97 $6,501.17
36.00% 5343866 53,648 58 53,858.50 $4,068.42 $427834  $4,48826 §4,693.18 $4,908.10 §5,118.03 $5,327.95 5,537 87 $5,747.79 $5,957.71 §6,167.63 $6,377.55
37.00%  $3360.96 3,567 60 5377424  $3,980.88 54,187.53 $4,394.17 $4,600.81 $4,807.45 §5,014.09 5522073 5,427 37 $5,634.01 $5,840.65 §6,047.30 $6,253.94
38.00% 5328327 $3,486.63 53,680.99 $3,892.35 54,006.71 $4,300.07 $4,503.43 $4,706.79 $4,910.15 55,113.51 $5,316.88 $552024  $5723.60 $5926.96 $6,130.32
39.00% $3,205.57 $3,405.65 $3,605.73 $3,805.81 $4,005.89 $4,205.97 $4,406.08 $4,606.14 $4,806.22 $5,006.30 $5,206.38 $5,406.46 $5,606.54 $5,806.62 56,006.70
40.00% $3127.87 $3,324.67 $3,521.48 $3718.28 $3,915.08 $4,111.88 $4,308.68 $4,505.48 54,702.28 $4,899.08 $5,095.88 $5,292.68 $5,489.49 $5,686.29 ©5,883.09
41.00%  $3,050.18 §3,243.70 53,437.22 $363074 5382426 54,017.78 5421130 $4,404.82 54,508.35 54,791.87 $4,085.39 §5,178.91 §5372.43 §5565.95 §5,759.47
4200%  $297248 §3,162.72 $3,352.96 $3,543.20 $3,733.45 $3,923.69 §4,113.93 $4,304.17 §4,494.41 $4,684.65 §4,874.89 $5,065.13 $5,265.37 §5,44561 $5,635.86
43.00%  $2,89479 §3,081.75 53,268.71 3,455 67 53,642.63 $3,829.59 $4,016.55 $4,203.51 §4,300.47 5457743 $4,764.40 $4,951.36 $5,138.32 §532528 551224
4400%  $2,817.09 $3,000.77 53,184.45 $3,368.13 53,551.81 $3,735.49 5391918 54,102.86 $428654 5447022 $4,653.90 $4,837.58 $5,021.26 §5204.94 §5388.62
45.00% $2739.39 $2,919.79 $3,100.20 $3,280.60 $3,461.00 $3,641.40 $3,821.80 $4,002.20 $4,182.60 $4,363.00 $4,542.40 $4,723.80 $4,004.20 $5,084.61 55265.01
46.00% $2,661.70 $2,838.82 $3,015.94 $3,193.08 $3,370.18 $3,547.30 $3,724.42 $3,901.54 $4,078.66 $4,255.79 443291 $4,610.03 $4,787.15 $4,964.27 5514139
47.00%  $2584.00 §275784  $2,93168 $3,105.52 $3,279.37 5345321 53,627.05 $3,300.89 5397473 54,148.57 5432241 54,496.25 54,670.09 5484393 8501777
48.00%  $250631 §2,676.87 52,847.43 $3,017.99 53,188.55 $3,359.11 §3,529.67 $3,700.23 §3,870.79 54,041.35 $4211.91 $4,382.48 $4553.04 5472360 $4,394.16
49.00%  $242861 §2,505.89 $2,763.17 $2,930.45 53,007.73 $3,265.01 §3,432.29 $3,500.58 §3,766.86 5393414 §4,101.42 $4,268.70 $4,435.98 $4603.26 $4,77054
50.00%  5$2,350.91 52514.91 52,678.92 $2,842.92 53,006.92 $3,170.92 $3,334.92 $3,498.92 $3,662.92 53,826.92 $3,990.92 $4,154.92 $4,318.92 §448292 $4,646.93

Figure 5.39 — Scenario Analysis Table

5.12 Huacrpymenr Cermerrarmu n Kaacrepusanumn

A final analytical technique of interest is that of segmentation clustering. Figure 5.40 illustrates a
sample dataset. You can select the data and run the tool through Risk Simulator | Tools |
Segmentation Clustering. Figure 5.40 shows a sample segmentation of two groups. That is, taking
the original data set, we run some internal algorithms (a combination or k-means hierarchical
clustering and other method of moments in order to find the best-fitting groups or natural
statistical clusters) to statistically divide, or segment, the original data set into two groups. You
can see the two-group memberships in Figure 5.40. Clearly you can segment this data set into as
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many groups as you wish. This technique is valuable in a variety of settings including marketing
(market segmentation of customers into various customer relationship management groups
etc.), physical sciences, engineering, and others.

CermeHTaLMA faHHBIX

MpK HANKUKK KPYMHOTO MACCHBa JaHHbIX MHOTLA NPeACcTABNASTCA BaHHBIM CEIMEHTHPOBATE MK CTPYMNMPOBAaTh A3HHBIE B OTAENbHBIE KNACTEDDI
(Hanpumep, puIHOYHAA CETMEHTALMA KAMEHTOB B Pa3/IMUHBIE TPYMNbI HA OCHOBAHMM KIMEHTCKMX OTHOLWEHWHA KK KNACTEPUIALIMA PAZMUHBIX
NpUPOOHBIX M HABNKLaeMbIX AaHHBIX B 0BN3CTH ECTECTBEHHBIX M TEXHWUECKWMX Hayk). COUETAHHE HEDAPXMUECKON KNACTEDH3ALMK k-CpEOHMX

M KaKOro-NKB0 4pYroro MeTo4a MOMEHTOB MCNOMb3YETCA JNA HAXOMAEHHA Hanbonee NONXOLALLMX TPYNN MAK ECTECTBEHHBIX KNACTEPOB ANA
CTaTMCTHUECKOTD Pa3AeNeHHMA MK CETMEHTALLMM MCXOAHOTO MACCHBa JaHHBIX Ha HECKO/BKO rpynn.

Mpouegypa:

JaHHble 1. BoibepuTe gaHHble (Hanpumep, B11:B25), HaxmuTe Risk Simulator | MHcTpymeHThI | CermenTauua M KnacTepu3auua
1.2 M YKaMMTe, Ha CKOMbKO FPYNN cnegyeT pasaennTe JaHHble (3TOT BbIBOP LEAMKOM 3aBMCMT OT NONb30BaTENA,
1.5 M MOeT NoTpeBoBaTbCA HECKO/IBKO NOMNbITOK, YTOObI ONPeaenUTb ONTMMaNbHOE YMCAO
14 KNacTepos), 3aTem HaxmmTe OK
13 2. CMOTpHTE pesynbTaThl B CO30aHHOM OTYETe
1.2 P -

1.5 IE AHaNM3 KNaCTEPOB M CETMEHTALIMK l =1 éj
5.6
Lnanus KNacTEPOE W CEMMEHTAUMKM MCNONL3YETCA ANA M3TEMaTHHECKOrD
5.3 P330ENSHUA M3CCHUES OSHHBIX HE PSSHLIE MPYNNbl CEMMEHTOE WNK KN3CTEPHI
5.4 Bifpantbie AatHblE
5.9 : =
6.1 i 3
6.5 1.5
15.6 14
15.4 i e
15.3 L2
1.5
5.6
5.3
5.4
5.9
6.1 i
[
Onum
@ MokasateBoe |3 2| KnacTephl cerMeHTaLMK
() TokasaTe HOMEp KnacTepa | 2 =
() TNoKkapaTk NPHHEANEXHOCTE KNECTEPOE N0 SHAYEHNID
h,

Figure 5.40 — Segmentation Clustering Tool and Results
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5.13 RISK SIMULATOR 2011/2012 HoBbre HHCTpYyMEHTBI

5.14 I ereparop cayuarapix arces. Meroa Momrre-
Kapao o cpaBaenmro ¢ merosom AartHackoro
ramepkyba u meroasom Koppesarmmorror CBasko

Starting with version 2011/2012, thete are 6 Random Number Generators, 3 Correlation
Copulas, and 2 Simulation Sampling Methods to choose from (Figure 5.41). These preferences
are set through the Risk Simulator | Options location.

The Random Number Generator (RNG) is at the heart of any simulation software. Based on
the random number generated, different mathematical distributions can be constructed. The
default method is the ROV Risk Simulator proprietary methodology, which provides the best
and most robust random numbers. As noted, there are 6 supported random number generators
and, in general, the ROV Risk Simulator default method and the Advanced Subtractive
Random Shuffle method are the two approaches recommended for use. Do not apply the
other methods unless your model or analytics specifically calls for their use, and even then, we
recommended testing the results against these two recommended approaches. The further
down the list of RNGs, the simpler the algorithm and the faster it runs, in comparison with the
more robust results from RNGs further up the list.

In the Correlations section, three methods are supported: the Normal Copula, T-Copula, and
Quasi-Normal Copula. These methods rely on mathematical integration techniques, and when
in doubt, the normal copula provides the safest and most conservative results. The t-copula
provides for extreme values in the tails of the simulated distributions, whereas the quasi-normal
copula returns results that are between the values derived by the other two methods.

In the Simulation methods section, Monte Carlo Simulation (MCS) and Latin Hypercube
Sampling (LHS) methods are supported. Note that Copulas and other multivariate functions
are not compatible with LHS because LHS can be applied to a single random variable but not
over a joint distribution. In reality, LHS has very limited impact on the model output's accuracy
the more distributions there are in a model since LHS only applies to distributions individually.
The benefit of LHS is also eroded if one does not complete the number of samples nominated
at the beginning, that is, if one halts the simulation run in mid-simulation. LHS also applies a
heavy burden on a simulation model with a large number of inputs because it needs to generate
and organize samples from each distribution prior to running the first sample from a
distribution. This can cause a long delay in running a large model without providing much more
additional accuracy. Finally, LHS is best applied when the distributions are well behaved and
symmetrical and without any correlations. Nonetheless, LHS is a powerful approach that yields
a uniformly sampled distribution, where MCS can sometimes generate lumpy distributions
(sampled data can sometimes be more heavily concentrated in one area of the distribution) as
compared to a more uniformly sampled distribution (every part of the distribution will be
sampled) when LHS is applied.
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[ E Onugm

[7] Ceephyte Excel v Bce aMarpaMMe: Npw BEINCTHEHMA
Janyckate Risk Simulator emecTe ¢ Excel
[7] Bcerpa orofipaxars okna nporkosa ceepry

I:‘ MokazaTte Aueikn KOMMEHTIPMEE K QOMYLLEHWAM,
NporHogaM W NEPEMEHHEIM PELWEHWA
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@ ROV Risk Simulator (no ymomuakm)
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") Honrocpoutios Tacoeatnes
) Portable Random Shuffle
") Quick |EEE Hex
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Currynaumn

@ Cumynawn no meTomy Monte-Kapno (no ymonuatm)
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U

Procedure
(Deseasonalization
and Detrending)

—

Figure 5.41 — Risk Simulator Options

5.15 yaasenre ceCOHHOCTH H TPEHAA AAHHBIX

The data deseasonalization and detrending tool removes any seasonal and trending
components in your original data (Figure 5.42). In forecasting models, the process usually
includes removing the effects of accumulating data sets from seasonality and trend to show
only the absolute changes in values and to allow potential cyclical patterns to be identified after
removing the general drift, tendency, twists, bends, and effects of seasonal cycles of a set of
time-series data. For example, a detrended data set may be necessaty to see a more accurate
account of a company's sales in a given year more clearly by shifting the entire data set from a
slope to a flat surface to better expose the undetlying cycles and fluctuations.

Many time-series data exhibit seasonality where certain events repeat themselves after some
time period or seasonality period (e.g., ski resorts’ revenues are higher in winter than in summer,
and this predictable cycle will repeat itself every winter). Seasonality periods represent how
many periods would have to pass before the cycle repeats itself (e.g., 24 hours in a day, 12
months in a year, 4 quarters in a year, 60 minutes in an hour, etc.). For deseasonalized and
detrended data, a seasonal index greater than 1 indicates a high period or peak within the
seasonal cycle, and a value below 1 indicates a dip in the cycle.

e  Select the data you wish to analyze (e.g., B9:B28) and click on Risk Simulator | Tools |
Data Deseasonalization and Detrending.

o Select Deseasonalize Data and /ot Detrend Data, select any detrending models you wish to
run, enter in the relevant orders (e.g, polynomial order, moving average order,
difference order, and rate order), and click OK.
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e Review the two reports generated for more details on the methodology, application,
and resulting charts and deseasonalized/detrended data.

Procedure o Selet the data you wish to analyze (e.g., B9:B28) and click on Risk Sinuulator | Tools |
(Seasonality Test) Data Seasonality Test.

o Enter in the maxinmm seasonality period to fest. That is, if you enter 6, the tool will test the
following seasonality periods: 1, 2, 3, 4, 5, and 6. Period 1, of course, imply no
seasonality in the data.

e Review the report generated for more details on the methodology, application, and
resulting charts and seasonality test results. The best seasonality periodicity is listed first
(ranked by the lowest RMSE error measure), and all the relevant error measurements
are included for comparison: root mean squared error (RMSE), mean squared error
(MSE), mean absolute deviation (MAD), and mean absolute petrcentage error

(MAPE).

Jlece3oHanu3aumMa JaHHbIX, ETPEH, AAHHBIX W "

WHCTpYMEHT ANA [ece3oHanM3alny M AeTpeHAMpOBaHMA JaHHbIX B NpunomeHnn Risk Simulator nossonaeT ycTpasATb Niobble Ce30HHbIE M TPEHA0BbIE KOMMOHEHTHI M3 JaHHbIX. ITOT
npouecc Nno3soNAeT omﬁpamarb TONBKO 80COMKTHBIE MIMEHEHHA B 3HAUEHMAX OT nepvoja K Nneprody, 4To No3B0ONAET BbIABNATL UWKIHMUECKHME 3aKOHOMEDHOCTH

B JlaHHbIX BpEMEHHDIX PAAOS. [ece30HanM3auna M AETPeHAMPOBAHHE MOMOraeT yCTpaHF!TDI'I}OﬁDIE ofwue ,ﬂpeﬁq)bl, TEHASHUHH, PE3KME CKAUKH, M3MEHEHHWA, a TaKkxe

MPOYME CE30HHBIE LMKAbI, KOTOPBIE MOTYT BO3AEHCTBOBATb Ha AaHHbIE BPEMEHHBIX PAOB, MCKAXKaA MCTMHHOE CTPYKTYPHOE NOBEAEHWE AaHHbIX HA NPOTAMEHMM BPEMEHH.

aHHBLIE A
4 JlecesoHanvsauun v ASTPEHANPCBaHME JaHHBIX @
68420 Mpouegypa g W AeTpeHgup 5
584.10 [atnbiil MHCTPYMEHT NPEHESHEYEH A AECES0HANMIALUMA M NETPEHIMPOBIHIA 1. BuiepHTe JaHHLIE ANA BHANMIA (Hanpumep, BI:B28)
DaHHBIX, TO €CTh OH YCTPEHAET ENMAHWE CESOHHBIX KoneGaHui W TPEHOOE Ha . .
765.40 MCXOOHbIE AaHtbie. [1PH CO3MaHWW MOENEH NPOrHOSMPOBAHMA MHOTAS W HamuTe Risk Simulator | MncTpymenTel | JanHble
HeOﬁXWMO YCTPaHWTE BO3ASHCTENE HE MBCCHBLI HBKOMNEHHEIX ABHHBIX
§92.30 SEPERTOB CE30HHLIX KONEBaHUA M TPEHADS, YTofbl OTOBPEXETL TONbKG A 1 AETPeHAUP
885.40 OCONIOTHEIE USMEHEHHR B SHAUEHHAX, YTO NOIBONAET BLHABNATE 2. BoifepyTe [lecesoHann3auua ganHbix v/ unm [leTpeHguposaue AaHHbIX,
NOTEHUMENBHBIE UMKNMYECKWE 33KOHOMEDHOCTU NOCNE HCKMIDYEHNA OSLLlHK
677.00 TPEHOOE, TERASHLMAN, PE3KMK CKEYKOB W M3MEHEHWI, 3 TAKKE BOGNSACTEMA BbifepurTe NHBYH MOAENE AETPEHAWDOBAHMA HA CBOE YCMOTPEHHE
1,006.60 e L o e e W BEEAWTE COOTBETCTEYHLUMA NOPAAOK [HANPUMED, NOAMHOMWANBHBIA NOPAJOK,
1,122.10 MecToraxomnerve manHsx |B¥B28 E MOPAAOK CKOMB3ALETT CPEAHErD, PA3HOCTHLIM NOPALOK
1,163.40 ¥ NOPAJOK CTaBKK), a 3aTem HammuTe OK
993.20 I Decesonanvanposars Aattisie 3. CMOTpUTE NoapoBHOCTH B BYX CO3AAHHBIX OTUETAX
1,.312.50 UiCno NepRnoE 33 CESOHKEI LWKN N 3; 0 METOA0NOMMK, MPMMEHEHMM, MTOrOBbIX Tabnuuax
1,545.30 ] p.ecoHannanpoﬂaHme,r’,quper.wpoaaHHblx JDaHHbIX
1,596.20 W DNerpernnposate manreie
1,260.40
1.735.20 W TNumeitvoe ¥ 3rcnokenupansros
202970 ¥ NMorapwprmeckos ¥ MonwHomwanbhoe (nopAaok) [ 3:
2.107.80 W Crenese ¥ Cronesawee cpenres (nopanok) |3 El:
1,650.30 W Cratweckoe cpepree ¥ Paswocts (nopamok) 1 3:
2,304.40 [V Cratmueckan megpana [V Vpoeens (nopRgok) 1 E|:
2 639.40
Otmena

Figure 5.42 — Deseasonalization and Detrending Data

5.16 Aaasm3 OCHOBHBIX KOMITOHEHTOB

Principal Component Analysis is a way of identifying patterns in data and recasting the data in
such a way as to highlight their similarities and differences (Figure 5.43). Patterns of data are
very difficult to find in high dimensions when multiple variables exist, and higher dimensional
graphs are very difficult to represent and interpret. Once the patterns in the data are found, they
can be compressed, and the number of dimensions is now reduced. This reduction of data
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dimensions does not mean much reduction in loss of information. Instead, similar levels of
information can now be obtained with a smaller number of variables.

Procedure o Selut the data to analyze (e.g., B11:K30), click on Risé Simulator | Tools | Principal
Component Analysis, and click OK.

e  Review the generated report for the computed results.

VARL VAR2 VAR3 VAR4 VARS VARG WVART VARS VARSI VARLO Npouepypa:

96.998 87.223 102.443 112765 111.984 117.331 78.164 97.658 110.950  89.133 1. BolbepuTe gaHHble AnA aHanu3a (Hanpumep, B11:K30), HaxmuTe
93.098 83.096 81531 90.224 92.265 78.821 94.321 95.960 101.349 96.345 Risk Simulator | MHCTpymeHTEI | AHAAKW3 TAABHBIX KOMNOHEHTOB
96.730 96.298 113.426 99.147 98.138 94.868 119.722 108.657 123.757 93.451 W HaxmMKTEe OK
116.615 83.876  105.389 109.022 119.189 99.155 94.762 106.751 96.187 107.576 2. CMOTPUTE pe3ynbTaTel BbIUMCAEHHA B CO3OEHHOM OTUETE
85.558 51.528 84.784 56.371 99.675 100.281 96.773 121.845 82.575 92.635

74224 114477 87202 93.464 107.577 104.667 108.746 105.957 86.282  88.843 - =)

106.940 103.226 90.602 97.591 101.315 105.578 101387 90.890 118.848 104.872 e

100.722 108.298 108.620 93.635 90.768 111.112 87.988 84411 107.113 106.384 AHENKS M3BHLIX KOMMNOHEHTOS - 3TO CNOCOS BLIABNEHUA 33KOHOMEPHOCTER
B GEHHEIX M NEPErPYTINMPOBSHUA KX TEKUM 0BPE30M, 4ToBE! NOAHEPKHYTE B

122.057 114.438 113.039 101.130 100.020 104.537 99.745 89.453 82.252  108.283 T s ST L G T T e e T e ) S s

104442 106.179 102135 89.731 112382 96.888 91.601 91.789 95710  95.466 CO MHOKECTEOM KOMIIOHEHTOB, KOMA CYLIECTBYET MHOKECTED
nNepemMeHHBX, 8 anarpameel HWJOEH}:\X O3HHEIX O4€Hb CIOIKHO COSO3BaTE

94.762 108.454 105.132 93.917 113.050 82.391 105.506 98.837 100417 93.459 W MHTEPNPETHPOBaTL. KaK TONbKO 33KOHOMEPHOCTE B A3HHGIC HBMOEHE, 100
MOXHO CXETk, 3 KONWYECTBO iTOB b Y]

94504 108.493 108.030 104.564 106.914 116.306 103.039 105.890 118.528 96.644 e e

110.383 101.435 111.410 98.517 92.202 110.760 94.182 105.339 105.458 96.836 MHEPOPMALWM. HENPOTHE. CXOXME YPOBHHM MHGPOPMALIK TENEPE MOXHO
NOMYYKUTE NPH UCNOoNE qncna .

95.592  86.340 119.930 94.335 100.861 97.657 128.354 112.520 108.809 113.322

101.879 105.420 97.504 87.789 112.667 97.111 86.941 107.643 107.843 104.282 MecTonaxcxnenme pannsx [B11:K30 =]

104.039 93.519 107.231 105.253 110.750 72.306 104.638 114.671 82.774  100.455

113.540 116.882 102.387 101.451 118545 99.574 93.431 109.074 99.901  110.392 S

104.347 114.534 98.788  90.383  84.614 74.349 10L.032 102.992 99.822  102.005 \

102.582 114.762 100.853  88.833 86.101 101.815 10S.511 84.912  93.500 105.235
97.832  96.564 98.365  95.603 91.974  106.448 100.588 112.635 102.622 100.571

Figure 5.43 — Principal Component Analysis

5.17 AHaAn3 CTpyKTypHBIX pa3pbIBOB

A structural break tests whether the coefficients in different data sets are equal, and this test is
most commonly used in time-seties analysis to test for the presence of a structural break (Figure
5.44). A time-series data set can be divided into two subsets. Structural break analysis is used to
test each subset individually and on one another and on the entire data set to statistically
determine if, indeed, there is a break starting at a particular time period. The structural break
test is often used to determine whether the independent variables have different impacts on
different subgroups of the population, such as to test if a new marketing campaign, activity,
major event, acquisition, divestiture, and so forth have an impact on the time-series data.

Suppose, for example, a data set has 100 time-seties data points. You can set various
breakpoints to test, for instance, data points 10, 30, and 51. (This means that three structural
break tests will be performed: data points 1-9 compared with 10-100; data points 1-29
compared with 30-100; and 1-50 compared with 51-100 to see if there is a break in the
underlying structure at the start of data points 10, 30, and 51.). A one-tailed hypothesis test is
performed on the null hypothesis (HO) such that the two data subsets are statistically similar to
one another, that is, there is no statistically significant structural break. The alternative
hypothesis (Ha) is that the two data subsets are statistically different from one another,
indicating a possible structural break. If the calculated p-values are less than or equal to 0.01,
0.05, or 0.10, then the hypothesis is rejected, which implies that the two data subsets are
statistically significantly different at the 1%, 5%, and 10% significance levels. High p-values
indicate that there is no statistically significant structural break.
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o Selut the data you wish to analyze (e.g., B15:D34), click on Risk Simulator | Tools |
Structural Break Test, enter in the relevant test points you wish to apply on the data (e.g.,
6, 10, 12), and click OK.

e Review the report to determine which of these test points indicate a statistically
significant break point in your data and which points do not.

Y X1 X2
521 18308 185 Npoueaypa:
367 1148 600 1. BoiDepuTe faHHble 4NA aHanmza (Hanpumep, B13:D34) u HammuTe
443 18068 372 Risk Simulator | MHcTpymenTh | MpoBepHa Ha CTPYKTYPHLIN pa3p.IB, 3 33TEM BEEAWTE
365 7729 142 COOTEBETCTEBYIOLWME TOURKM NPOBEPKK, KOTOPbIE CAEAYET MPHUMEHHTE K AaHHbIM
614 100484 432 (Hanpumep, 6, 10, 12) 1 HaxmuTe OK
385 16728 290 2. NpocmoTpuTe oTYeT, UTobbl ONpeaentTs, KaKWE M3 ITUX NPOBEPOYHDBIX TOYEK
286 14630 346 YHA3LIBAIOT HA CTATMCTHUYECKM 3HAYMMYO TOUKY pa3pbiea
397 4008 328 B lAHHbDIX, 8 KAKME HE YHA3bIBAKOT
764 38927 354
427 22322 266 i " ]
153 3711 220 npOBEpKE Ha CTRYKTYPHBIW paspols @
231 3136 137 attibie BpeMEHHOMD PAGE |B1 503 _@J
524 50508 266
328 28386 173 [poBSpoYHLIE TOYKK PESPLIES |ill}.1152m —
240 16996 190 e s
286 13035 239

OTmena |

285 12973 190
569 16309 241 h

96 5227 189
498 19235 358

Figure 5.44 — Structural Break Analysis
5.18 Ilporuossr TpeHsoB

Trendlines can be used to determine if a set of time-series data follows any appreciable trend
(Figure 5.45). Trends can be linear or nonlinear (such as exponential, logarithmic, moving
average, powet, polynomial, or power).

o Selet the data you wish to analyze, click on Risk Simulator

Forecasting | Trendline, select

the relevant trendlines you wish to apply on the data (e.g., select all methods by
default), enter in the number of periods to forecast (e.g., 6 periods), and click OK.

e Review the report to determine which of these test trendlines provide the best fit and
best forecast for your data.
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Figure 5.45 — Trendline Forecasts

5.19 HucrpymeHT IPOBEPKH MOACAECH

After a model is created and after assumptions and forecasts have been set, you can run the
simulation as usual or run the Check Model tool (Figure 5.46) to test if the model has been set
up correctly. Alternatively, if the model does not run and you suspect that some settings may be
incorrect, run this tool from Risk Simulator | Tools | Check Model to identify where there might
be problems with your model. Note that while this tool checks for the most common model
problems as well as for problems in Risk Simulator assumptions and forecasts, it is in no way
comprehensive enough to test for all types of problems. It is still up to the model developer to
make sure the model works propetly.
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Figure 5.46 — Model Checking Tool

5.20 HucrpymentT ycTaHOBKH HPOLICHTHBIX

pacripeAeAeHum

The Percentile Distributional Fitting tool (Figure 5.47) is another alternate way of fitting
probability distributions. There are several related tools and each has its own uses and
advantages:

e Distributional Fitting (Percentiles)}—using an alternate method of entry
(petcentiles and first/second moment combinations) to find the bestfitting
parameters of a specified distribution without the need for having raw data. This
method is suitable for use when there are insufficient data, only when percentiles and
moments are available, or as a means to recover the entire distribution with only two
or three data points but the distribution type needs to be assumed or known.

e Distributional Fitting (Single Variable)—using statistical methods to fit your raw
data to all 42 distributions to find the best fitting distribution and its input parameters.
Multiple data points are required for a good fit, and the distribution type may or may
not be known ahead of time.
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¢ Distributional Fitting (Multiple Variables)—using statistical methods to fit your
raw data on multiple variables at the same time. This method uses the same algorithms
as the single variable fitting, but incorporates a pairwise correlation matrix between the
variables. Multiple data points are required for a good fit, and the distribution type may

or may not be known ahead of time.

e Custom Distribution (Set Assumption)—using nonparametric

resampling

techniques to generate a custom distribution with the existing raw data and to simulate
the distribution based on this empirical distribution. Fewer data points are required,
and the distribution type is not known ahead of time.

Click on Risk Simmulator | Tools | Distributional Fitting (Percentiles), choose the probability
distribution and types of inputs you wish to use, enter the parameters, and click Run to obtain
the results. Review the fitted R-square results and compare the empirical versus theoretical
fitting results to determine if your distribution is a good fit.

.
@ Data Fitting — Subject Matter Expert Curve Fit

(=S

Step 1: Select the distribution and parameter estmation type

Triangular -- Minimum, MaostLikely, Percentile
Triangular —- Percentile, Percentile, Maximum
Triangular -- Percentile, MostLikely, Percentile
Triangular -- Minimum, Percentile, Percentile
Triangular —- Percentile, Percentile, Percentile
Triangular -- Mean, Stdev, Percentile

* Uniform *

Uniform — Minimum, Percentile

Uniform - Percentile, Maximum

Uniform — Percentile, Percentile

Uniform - Mean, Stdev

* Weibull =

Weibull - Alpha, Percentile

Weibull - Percentile, Beta

Weibull - Percentile, Percentie

Weibull - Mean, Stdev

* Weibull 3=

Weibull 3 - Percentile, Beta, Location
Weibull 3 - Alpha, Percentile, Location
Weibull 3 — Alpha, Beta, Percentile

Weibull 3 - Percentile, Percentile, Location
Weibull 3 --Percentile, Beta, Percentle
Weibull 3 - Alpha, Percentile, Percentile

Weibull 3 -—-Mean, Stdev, Percentile

Weibull 3 -- Percentile, Percentile, Percentile B

m |

Dedmals: 4 =

This data fitting method allows you to enter custom percentiles in lieu of one or mare regular input parameters to determine the theoretical distribution, and is useful when soliciting
subject matter expert opinions. For instance, instead of entering Mean and Standard Deviation for a Normal distribution, you can replace any one or both of these parameters with
your own percentiles and this tool will perform a fitting to obtain the relevant distributional parameters.

Step 2: Enter the relevant inputs

Parameter Value Percentile(%)
Percentile 253 10
Percentile 2,66 45
Percentile 3.89

Step 3: Run curve-fit and review the empirical versus theoretical distributions

Fitted R-Square  [[IEGO 00058

Alpha 07113
Beta 0.2935

Location 25176

Empirical Theoretical
2.5300 2,5300
2,6600 26600
3.8900 3.8300
Mean 28836
Stdev 05255
Skew 3.4054

Kurtosis 19,3606

Close

Figure 5.47 — Percentile Distributional Fitting Tool
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5.21 PacripeaeAnrreAbHBIE AHATPAMMBI H TAOAHII:
HHCTPYMEHT PACIIPEACACHHA BEPOATHOCTEH

Distributional Charts and Tables is a new Probability Distribution tool that is a very powerful
and fast module used for generating distribution charts and tables (Figures 5.48 through 5.51).
Note that there are three similar tools in Risk Simulator but each does very different things:

Distributional Analysis—used to quickly compute the PDF, CDF, and ICDF of the 42
probability distributions available in Risk Simulator, and to return a probability table of these

values.

Distributional Charts and Tables—the Probability Distribution tool described here used to
compare different parameters of the same distribution (e.g., the shapes and PDF, CDF, ICDF
values of a Weibull distribution with Alpha and Beta of |2, 2], [3, 5], and [3.5, 8], and overlays
them on top of one another).

Overlay Charts—used to compare different distributions (theoretical input assumptions and
empirically simulated output forecasts) and to overlay them on top of one another for a visual
compatison.

e Run ROV BizStats at Risk Simulator | Distributional Charts and Tables, click on the Apply
Global Inputs button to load a sample set of input parameters or enter your own
inputs, and click Run to compute the results. The resulting four moments and CDF,
ICDF, PDF are computed for each of the 45 probability distributions (Figure 5.48).

e C(lick on the Charts and Tables tab (Figure 5.49), select a distribution [A] (e.g.,
Arcsine), choose if you wish to run the CDF, ICDF, or PDF [B], enter the relevant
inputs, and click Run Chart or Run Table [C]. You can switch between the Charts and
Table tab to view the results as well as try out some of the chart icons [E] to see the
effects on the chart.

®  You can also change two parameters [H] to generate multiple charts and distribution
tables by entetring the From/To/Step input or using the Custom inputs and then
hitting Run. For example, as illustrated in Figure 5.50, run the Beta distribution and
select PDF |G], select Alpha and Beta to change [H] using custom [I] inputs and enter
the relevant input parameters: 2;5;5 for Alpha and 5;3;5 for Beta [J], and click Run
Chart. This will generate three Beta distributions [K]: Beta (2,5), Beta (5,3), and Beta
(5,5) [L)]. Explore vatious chart types, gridlines, language, and decimal settings [M], and
try rerunning the distribution using theoretical versus empirically simulated values [IN].

e  Figure 5.51 illustrates the probability tables generated for a binomial distribution where
the probability of success and number of successful trials (random variable X) are
selected to vaty [O] using the From/To/Step option. Tty to replicate the calculation as
shown and click on the Table tab [P] to view the created probability density function
results. This example uses a binomial distribution with a starting input set of Trials =
20, Probability (of success) = 0.5, and Random X, or Number of Successful Ttials, =
10, where the Probability of Success is allowed to change from 0., 0.25, ..., 0.50 and is
shown as the row variable, and the Number of Successful Ttials is also allowed to
change from 0, 1, 2, ..., 8, and is shown as the column vatiable. PDF is chosen and,
hence, the results in the table show the probability that the given events occur. For
instance, the probability of getting exactly 2 successes when 20 trials are run where
each trial has a 25% chance of success is 0.0669, or 6.69%.
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ROV PROBABILITY DISTRIBUTIONS

=)

Distributions | Charts and Tables
This teol lists all the probability distributions available in Real Options Valuation, Inc.s suite of products.
Minimum 10 Apha 2 Location 10 Percentie 05 Mean 10 Mphal 5 DF Numerator 10
Madmum 20 Beta 5 FProbabity 05 DF 10 Sdev 2 Apha2 5 DF Denominator 20
Mostliksly 15 Lsmbda 1.2 Factor 2 Trsls 20 Successes 5§ Population 100 Pop Success 50
Arcsine Bernoulli Beta Beta3 Betad e
Minimum 10 Probability 05 Alpha 2 Alpha 2 Alpha 2
Maximum 20 Beta 5 Beta 5 Beta 5
Location 10 Location 10
Factor 2
Random X 12 Randem X Q Random X 06 Random X 10.25 Randem X 108
Percentile 0.3 Percentile 05 Percentile 05 Percentile 0.5 Percentile 05
PDF 0.7958 PDF 0.5000 PDF 0.4608 PDF 23730 PDF 1.5552
CDF 0.2952 CDF 0.5000 CDF 0.9590 CDF 0.4661 CDF 0.7667
ICDF 15.0000 ICDF 1.0000 ICDF 0.2644 ICDF 10.2644 ICDF 10.5289
Mean 15.0000 Mean 0.5000 Mean 0.2857 Mean 10.2857 Mean 105714
Stdev 3.5355 Stdev 0.5000 Stdev 01597 Stdev 0.1597 Stdev 03194
Skew 0.0000 Skew 0.0000 Skew 0.5963 Skew 0.5963 Skew 0.5963
Kurtasis -1.5000 Kurtosis -2.0000 Kurtasis -0.1200 Kurtosis -0.1200 Kurtosis -0.1200
Binomial Cauchy Chi-Square Cosine Discrete Uniform
Trials 20 Alpha 2 DF 10 Minimum 10 Minimum 10
Probability 0.3 Beta 5 Maximum 20 Maximum 20
Random X 10 Randem X 12 Random X 14 Random X 155 Randem X 16
Percentile 0.3 Percentile 03 Percentile 05 Percentile 0.5 Percentile 05
PDF 01762 PDF 00127 PDF 0.0456 PDF 0.1551 PDF 0.0809
CDF 0.5881 CDF 0.8524 CDF 0.8270 CDF 0.5782 CDF 0.6364
ICDF 10.0000 ICDF 2.0000 ICDF 93418 ICDF 15.0000 ICDF 15.0000
Mean 10.0000 Mean 10.0000 Mean 15.0000 Mean 15.0000
Stdev 22361 Stdev 4471 Stdev 21762 Stdev 31623
Skew 0.0000 Skew 0.8944 Skew 0.0000 Skew 0.0000
Kurtesis -01000 Kurtesis 1.2000 Kurtosis -0.5938 Kurtosis -1.2200 ~
Decimals: 4 % Language: Close.
Figure 5.48 — Probability Distribution Tool (45 Probability Distributions)
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ROV PROBABILITY DISTRIBUTIONS

Distributions | Charts and Tables

Overtay Chat tool

This tool generates a probability table and comparative charts for a chesen distribution as well as the different shapes based on differert input parameters. To view multiple distributions, use Risk Simulator's

Distroution: [ Arcsine A ~ | Charts and Tables Chart
Changs First Parsmetsr: Changs Sscond Pemmeter () Theoretical Distrbution
Mo |10 Rase - v|  © Smusted Distibution
e Fom 0 Fom O Trsls 10000
Tt I ) From/To Series T 1 T 1 Seed 123
o Custom Step 01 Step 01
: wrrs .
EHdS MBIty DFn b M E v E  index

i

Probabilty Density

o
10.2000

F Decimals: 4 ]

11.2689

12.3338

-

13.4007 14.4875 155344

16.8013

17.6682

18.7351

w Minimum: 10.0000
Maximum: 20.0000

Crart Type: [2D Aea

Gridines

Figure 5.49 — ROV Probability Distribution (PDF and CDF Chatts)
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Charts and Tables

wertay Chart tool

Change First Parameter

H  Change Second Parameter:

This tool generates a probability table and comparative charts for a chosen distribution as well as the diferent shapes based on different input parameters. To view muttiple distributions, use Risk Simulator's
O

Chart
Theoretical Distribution

Alph H G . N
Ipha Paramater- Apha v [Beta v| () Smulated Distribution
5
2= From 0 From 0 Trials 1000
06 @IDF -
Random X - From/Ta Series Te 1 l To 1 Seed 123
0
Result: Custom Step | 01 Step | 01
0 0.450800 _—Run Chart
255 NECET

.0, Choose Gamma dsbution,set Apha and Beta as parametersto change, and enter: 2;3and 5:3mthe two customnput | Comr ]
baxes for generating Gamma(2.5) and Gamma(3.9) charts

PP eI R TT2E O FEE

2.5
K
2
=
Z 15
5
8
=
=
£
g
&
0.5
0.0083 02483 0.4883 07284 0.9684
Decimals: 4 = Language M Chat Type: 2D Line v [ cidnes | [ _Rm [ ces
Figure 5.50 — ROV Probability Distribution (Multiple Overlay Chatts)
e
ROV PROBABILITY DISTRIBUTIONS =]
Chars and Tables
This tool generstes a probabilty table and comparative charts for a chosen distribution as wel a5 the different shapes based on diferent input parameters. To view mutiple disrbutions, use Fisk Smuator’s
Overlay Chat tool.
Distrbution: | Binomial | Charts and Tables Chatt
Change Firt Parameter Change Second Parameter Theoretical Distribution
2
Trials Parameter: [Probabifty ~]  [Randomx - Simulated Distribution
05
Probabiity Fom 02 Fom 0 Trals 1000
Fendamxi| 10 FomToSeres O To 05 T 8 Seed | 122
U Resu: (©) Custom Step | 005 Step 1
0 0176197 Run Teble
255 5:3.5
[ormt [ Toe |_P
Raw Varable: Frobabilty Column Variable: Random X Type: POF
N 0.0000 1.0000 2.0000 2.0000 4.0000 5.0000 6.0000 7.0000 8.0000
1| 02000 00115 00576 01369 0.2054 02182 01746 0001 0.0545 00222
2 | 02500 00032 00211 0.0669 01339 01897 0203 01686 0124 00609
3| 03000 0.0008 0.0068 0.0278 00716 01304 01789 01916 01643 01144
4| 03500 00002 00020 0.0100 0.0323 00738 01272 04712 01844 01614
5 | 04000 00000 00005 0.0031 0.0123 00350 00746 01244 01659 01797
6 04500 00000 00001 0.0008 0.0040 00139 00365 0.0746 01221 01623
7| 05000 00000 00000 0.0002 0.0011 00046 00148 0.0370 00739 01201
Decimals: 4 = Language Close

Figure 5.51 — ROV Probability Distribution (Distribution Tables)
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5.22 ROV BizStats

This new ROV BizStats tool is a very powerful and fast module in Risk Simulator that is used
for running business statistics and analytical models on your data. It covers more than 130
business statistics and analytical models (Figures 5.52 through 5.55). The following provides a
few quick getting started steps on running the module and details on each of the elements in
the software.

Run ROV BizStats at Risk Sinumlator | ROV BizStats and click on Example to load a
sample data and model profile [A] ot type in your data ot copy/paste into the data grid
[D] (Figure 5.52). You can add your own notes or variable names in the first Notes

row [C].

Select the relevant model [F] to run in Step 2 and using the example data input settings
|G, enter in the relevant variables [H]. Separate variables for the same parameter using
semicolons and use a new line (hit Enter to create a new line) for different parameters.

Click Run [I] to compute the results [J]. You can view any relevant analytical results,
charts, or statistics from the vatious tabs in Step 3.

If required, you can provide a model name to save into the profile in Step 4 [L.
Multiple models can be saved in the same profile. Existing models can be edited or
deleted [M] and rearranged in order of appearance [N], and all the changes can be
saved [O] into a single profile with the file name extension *.bizstats.

The data grid size can be set in the menu, where the grid can accommodate up to
1,000 variable columns with 1 million rows of data per variable. The menu also allows
you to change the language settings and decimal settings for your data.

To get started, it is always a good idea to load the example file [A] that comes
complete with some data and precreated models [S]. You can double-click on any of
these models to run them and the results are shown in the report area [J], which
sometimes can be a chart or model statistics [T/U]. Using this example file, you can
now see how the input parameters [H] are entered based on the model description
[G], and you can proceed to create your own custom models.

Click on the variable headers [D] to select one or multiple vatiables at once, and then
right-click to add, delete, copy, paste, or visualize [P] the variables selected.

Models can also be entered using a Command console [V/W/X]. To see how this
works, double-click to run a model [S] and go to the Command console [V]. You can
replicate the model or create your own and click Run Command [X] when ready. Each
line in the console represents a model and its relevant parameters.

The entire *.bizstats profile (where data and multiple models are created and saved)
can be edited directly in XML [Z] by opening the XML Editor from the File menu.
Changes to the profile can be programmatically made here and takes effect once the
file is saved.

Click on the data grid’s column header(s) to select the entire column(s) or variable(s),
and once selected, you can right-click on the header to Auto Fit the column, Cut,
Copy, Delete, or Paste data. You can also click on and select multiple column headers
to select multiple vatiables and right-click and select Visualize to chart the data.
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e If a cell has a large value that is not completely displayed, click on and hover your
mouse over that cell and you will see a popup comment showing the entire value, or
simply resize the variable column (drag the column to make it wider, double click on
the column’s edge to auto fit the column, or right click on the column header and
select auto fit).

e  Use the up, down, left, right keys to move around the grid, or use the Home and End
keys on the keyboard to move to the far left and far right of a row. You can also use
combination keys such as: Cttl+Home to jump to the top left cell, Ctrl+End to the
bottom right cell, Shift+Up/Down to select a specific area, and so forth.

e  You can enter short notes for each variable on the Notes row. Remember to make
your notes short and simple.

e Try out the various chart icons on the Visualize tab to change the look and feel of the
charts (e.g., rotate, shift, zoom, change colors, add legend, and so forth).

e The Copy button is used to copy the Results, Charts, and Statistics tabs in Step 3 after
a model is run. If no models are run, then the copy function will only copy a blank

page.

e The Report button will only run if there are saved models in Step 4 or if there is data
in the grid, else the report generated will be empty. You will also need Microsoft Excel
to be installed to run the data extraction and results reports, and Microsoft
PowerPoint available to run the chart reports.

e When in doubt about how to run a specific model or statistical method, start the
Example profile and review how the data is setup in Step 1 or how the input
parameters are entered in Step 2. You can use these as getting started guides and
templates for your own data and models.

e The language can be changed in the Language menu. Note that currently there are 10
languages available in the software with more to be added later. However, sometimes
certain limited results will still be shown in English.

®  You can change how the list of models in Step 2 is shown by changing the View drop
list. You can list the models alphabetically, categorically, and by data input
requirements—note that in certain Unicode languages (e.g., Chinese, Japanese, and
Korean), there is no alphabetical arrangement and thetefore the first option will be
unavailable.

e The software can handle different regional decimal and numerical settings (e.g., one
thousand dollars and fifty cents can be written as 1,000.50 or 1.000,50 or 1°000,50 and
so forth). The decimal settings can be set in ROV BizStats’ menu Data | Decimal
Sertings. However, when in doubt, please change the computer’s regional settings to
English USA and keep the default North America 1,000.50 in ROV BizStats (this
setting is guaranteed to work with ROV BizStats and the default examples).
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p
ZF [EXAMPLE ] - ROV Biz Stats

==

File Data Lsnguage Help
STEP 1: Data Manually enter your data, paste from another application, STEP 2: Analysis Choose an analysis and enter the
A Example
B or load an example dataset with analysis E parameters required (see example
. parameter inputs below)
Dataset | visualize | Command D isuzlize View: | Alphabetical hd
N | vart | var2 | vars | vars | vars | vars | var7 | vare | vaRo | vARl0 ~ | Absolute Values (ABS) | s =
NO. ales v C x ) ) a XS [ ] | ANOVA: Randomized Blocks Multiple Treatme. . VARGVARZVARS H
ANOVA: Single Factor Multiple Treatments 01
6842 521 18308 185 4041 796 72 i ingle Fa "“ ple Treatmen 0 -
L5841 367 1148 600 055 1 85 ANOVA: Two Way Analysis « v
fie g CE g il S SR S e :Ri:‘:\mm F Dependent Variable, Independent
u .
. 8923 365 770 42 2351 451 73 e Sewar ) Variables, P-Value Threshold
8854 614 100484 432 2976 1908 715 e (Optional:0. 1), Time-Series Lags
677 385 16728 290 3294 I8 5 Auto Econometrics (Quick] (Optional
Autocorrelation and Partial Autocorrelation > Varl
. 10066 286 14630 346 3287 6784 67 o > Vazvesvers G
11221 397 4008 328 0566 3408 62 g > 01
11634 764 38927 3% 12838 2396 73 DB >0
L0932 437 )RR GATR 1119 S = | Control Chart: C
r Control Chart: NP
Runs the current analysis in Step 2 or selected Control Chart: P
saved analysis in Step 4, view the results, charts Control Chart: R
and statistics, copy the results and charts to Control Chart: U
cipboard, or generate reports J———— -

Results | Charts | Statistics

STEP 4: Save (Optional) Yfou can save mult

INumber of Dependent Variables Tested : 3
INumber of Econometric Models Tested : 61
INumber of Best Models Shown : 20
Summary of Top Models:

AD]R-5Q J
0.33034 VAR L;VARZ;LN(VAR3)
0.372065 LNVAR2);LN(VAR 3)

0.365719 VARZ;LN(VAR3)

0.35724 LN{VAR 1) HN(VAR3);LN(VAR2)
0.352202 LN(VARZ)HN(VAR);LN(VAR 1)
0.348503 LN(VAR 1) +.N(VAR 3); VAR2
0.336822 LN(VAR );LN(VAR 3)

0.31356 LN(VAR 1);LN(VAR2)

0.308514 LN{VAR 1);VAR2Z

0.301851 LN{VAR 1) .N(VAR2)

0.292559 LN(VAR2)+LN(VAR 3)

0.287751 LN(VAR 1) +N(VAR 2) +LN(VAR3)
0.285293 LN(VAR3)

0.281735 LN{VAR2); VAR

0.281577 LN(VAR 1) +.N(VAR3)

0.263211 VARZ;VAR3

0245075 VAR 1;LN(VARZ)

Auto Econometrics (Detailed)

for future retrieval

This is 2 test model running AE methodology inside ROV BizStats

ple analyses and notes in the profie

L

Absoluts Values
ANOVA Randomized Block

ANOVA Two Way
ARIMA (1,0, 1)
ARIMA (1,0, 2)
Auto ARIMA

Auto Econometrics (Quick)

ANOVA Single Factor Multiple Treatments

Auto Econometrics (Detailed)

Autocorrelation and Partial Autocorrelation

E Bz

Figure 5.52 — ROV BizStats (Statistical Analysis)

p
ZF [EXAMPLE | - ROV Biz Stats

(SRR )

File Data Language Help
STEP 1: Data Manually enter your data, paste from another application, STEP 2: Analysis Choose an analysis and enter the
or load an example dataset with analysis parameters required (see example
= parameter inputs below)

FPEHLEFREEALOF S0

e

Trend Line (Paner)
Trend Line (Rate Detrended)

Walue
T

Q

-2 0 2

4

6 8

Itn.

10

STEP 3: Run

T

- Charts | Statistics

12

14 16 18

20

Runs the current analysis in Step 2 or selected
saved analysis in Step 4, view the results, charts
and statistics, copy the results and charts to
dipboard, or generate reports

Trend Line (Static Mean Detrended)
Trend Line (Static Median Detrended)
Variance (Population)

Variance (Sample)

Volatility
Volatility:
Volatiity:
Volatiity:
Volatiity:
Volatiity:
Volatiity:

EGARCH

EGARCH-T

GARCH

GARCH-M

GIR GARCH
GIRTGARCH
Volatility: Log Returns Approach
Volatiity: TGARCH

Volatiity: TGARCH-M

Yield Curve (Bliss)

STEP 4: Save (Optional)

for future retrieval

BB+ 0+ 8 9l lgTad -0 § b~

Exponential Brownian Motion

Name:

Notes:

You can save multiple analyses and notes in the profile

100

0.05

0.25

10

1l b

@

Initizl Value, Drift Rate, Volatiity,
Horizon, Steps, Random Seed,
Iterations:

100

0.05

0.25

10

100

123456

10

WOV VOV VY Y

Stdev Population

Stdev Sample

Stepwise Regression (Backward)
Stepuise Regression (Correlation)
Stepuise Regression (Forward)

EDIT

Stepwise Regression (Forward-Backward) S
T T
Stochastic Process - Mean Reverting Jump Diffusion

SumM

Time Series Forecast (Auto)

Figure 5.53 — ROV BizStats (Data Visualization and Results Charts)
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-
7% [ EXAMPLE | - ROV Biz Stats

(=] - )

VAR63 )

062_ANOVATwoWayAnalysis ( VAR4D; VAR4 1; VAR42, VAR43; VAR44; VAR5,
VAR46; VARA7; VAR48; VAR49; VARS0; VARS1 # 3)

061_ANOVASingleFactorMultipleTreatments ( VARS7; VAR5S; VARS9 )

060_ANO i i catments ( VARG, VARG 1; VARG2,
VAR63 )

001_AutoEconometricsDetailed ( VARS # VARG, VARZ, VARS8 #0.1%0)

010_PrincipalComponentAnalysis ( VARG: VAR7, VARS: VAR, VAR10 )

N

w

@ W

File Data Language Help
STEP 1: Data Manually enter your data, paste from another application, STEP 2: Analysis Choose an analysis and enter the
or load an example dataset with analysis parameters required (see example
: parameter inputs below)
Y X vew (bt -
1 D60_ANO i i eatments ( VARGO; VARG1; VARG2, Stepwise Regression (Backward) -

STEP 3: Run Runs the current analysis in Step 2 or selected
saved analysis in Step 4, view the results, charts
and statistics, copy the results and charts to

clipboard, or generate reports

Results | Charts | Statistics

* indicates negative values

Standard Deviations:
1685.9352 92.8151 5.4045 232.7934 1.5207
Reduced Data Matrix:

.02 0. *0.0235 *0.0909 0.5140 *0.0322 *0.0459 *0.1152
*0.1169 0.5155 0.1681 *0.1824 0.2595 0.0431 0.1284 0.1010
*0.0241 *0.1154 *0.0339 *0.0683 0.6488 *0.0436 *0.0438 0.1124
#0.0526 #0.1003 00813 *0.0735 0.0150 #0.0816 0.3112 0.1061

0.0776 0.1985 *0.0619 0.0869 0.1055 #0.1270 0.0311 #0.0154
Correlation Matrix:

1.0000 0.3333 0.9550 0.2422 0.2374

0.3333 1.0000 0.3494 0.3187 0.1200

0.95%0 0,3494 1,0000 0.1964 0.2271

0.2422 0.3187 0.1964 1.0000 0.2805

0.2374 0.1200 0.2271 0.2905 1.0000
(Covariance Matrix:

470279784.3284 670889.8820 112410.0992 1222792.7730 7829.8444

670885.8820 8614.6500 175.2712 6886.4692 16.9438

11741n neay 178 3713 2a 310 247 1172 1 8RR

< T

VARS; VART; VARS; VARS; VA~
Stepwise Regression (Correlation)

Stepwise Regression (Forward)

Stepwise Regression (Forward-Backward)
Stochastic Process (Exponential Brownian M. ..
Stochastic Process (Geometric Brownian Moti.
Stochastic Process (Jump Diffusion)
Stochastic Process (Mean Reversion and Ju. ..
Stochastic Process (Mean Reversion)
Structural Break

Sum

Time-Series Analysis (Auto)

Time-Series Analysis (Double Exponential Sm...
Time-Series Analysis (Double Moving Average)
Time-Series Analysis (Holt-Winter's Additive)
Time-Series Analysis (Holt-Winter’s Multipiica. ..
Time-Series Analysis (Seasonal Additive)

l T r

Data:
> Varl;VarZ; Vard

STEP 4: Save (Optional) You can save multiple analyses and notes in the profile

for future retrieval
Auto Econometrics (Detailed)

This is a test model running AE methodology inside ROV BizStats

Parametric - 2 Var T Test for Independent Unequal Variances =
Parametric - 2 Var Z Test for Independent Means

Parametric - 2 Var Z Test for Independent Proportions

Power

Relative LN Returns

Relative Returns

Seasonality

Segmentation Clustering
Semi-Standard Deviation (Lower)

E) B

Figure 5.54 — ROV BizStats (Command Console)

S [ EXAMPLE ] - ROV Biz Stats

™
= |nlEk

Y File [Data| Language Help
STEP, Data Grid Configuration }te from another application, Example STEP 2: Analysis Choose an analysis and enter the
th anaksi parameters required (see example
rameter inputs below)
= Decimal Settings N » Morth America (1,000.50) vew:  [pehbeiel par pu )
JRa—— Europe and Latin America (1.000,50)
uto Fit Columns - . 8 . : 0 | Multple Regression (Linear) | VaRG; VART; VARS; VARS; VA ~
Multiple Regression (Noniinear)
E‘Eﬂ‘ Nonlinear Regression i
Nonparametric: Chi-Square Goodness of Fit 5 5 ;
98 <var name="VAR95" notes="" pr par : Chi-Square notm
o " note Nonparametric: Chi-Square Population Varia. ata:
|  <vnr nan=="VARSG" notes e > Varl; VarZ; Vars
100 <var name="VARST" motes Nonparametric: Friedman’s Test
101 <var neme="VAR9E" notes Nonparametric: Kruskal-Walls Test
102 <var mame="VAR9S" notes Nonparametric: Liliefors Test
103 <var name="VAR100" note Nonparametric: Runs Test
104 <¢/data> Nonparametric: Wicaxon Signed-Rank (One ...
105 <analysiz> Nonparametric: Wicoxon Signed-Rank (Two ...
106  <model name="Absolute Values' notes="" id="114" parameter="VART7"/> Parametric: One Variable (T) Mean
107  <model name="ANOVA Randomized Block" notes="" id="60" parameter="VAR6D;VAREL;VARE2 {VARES" /> Parametric: One Variable (2) Mean
198 <medel name—"ANDVA Single Factor Multiple Treatments’ notes='’ 1o=76L' paraveter= Parametics Gne Variable () Praportion
"VARSTVRRSS VARSS!/> Parametric: Two Variable (F) Variances
108 <model name="ANOVA Two Way" notes="" id="62" parameter=

"VAR40D ;VAR41 VARA2 VARA 3 VAR44 VARAS VAR 6 VARAT ;VARAS ;VARA S VARSO VARS1 ;
110 3"/>
111

Parametric: Two Variable (T) Dependent Means
STEP 4: Save (Optional)

You can save multiple analyses and notes in the profie
for future retrieval

<model name="ARIMA (1, 0, 1)" notes="" id="17" parameter="VARL
1121
1130 D Name: Auto Econometrics (Detailed)
114 1"/>

Notes: i p i
115 <model neme="ARIMA (1, 0, 2)* notes="" id="17" parameter="VARL This s a test model running AE methodology inside ROV Bizstats
1170
118 2"/> EDIT Parametric - 2 Var T Test for Independent Unequal Variances -~
119 <model nam RButo ARIMA" note " id="18" param VARLY /> Parametric - 2 Var Z Test for Independent Means
120 <medel name="RAuto Econometrics (Detailed)” notes="" id="1" parameter="VARS Parametric - 2 Var Z Test for Independent Proportions
121 VARS 'VART 'VARS Power
1220.1 4
123 0"/> Relative LN Returns
124 medel e=" o Econometrics (Ouick)" potes="" jd="2" paramerer="VARS 2 Relative Returns

Save
[ bide basic XML tags save [ ok ][ canel | [—J Seasaraltty

Segmentation Clustering
Exit

Semi-Standard Deviation (Lower)

Figure 5.55 — ROV BizStats (XML Editor)
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5.23 Heriponnsre cerr i Komburaroprsre
METOAOAOI'HH IIPOTHO3HPOBAHHUA HEYETKOH AOTHKH

The term Neural Network is often used to refer to a network or circuit of biological neurons,
while modern usage of the term often refers to artificial neural networks comprising artificial
neurons, or nodes, recreated in a software environment. Such networks attempt to mimic the
neurons in the human brain in ways of thinking and identifying patterns and, in our situation,
identifying patterns for the purposes of forecasting time-series data. In Risk Simulator, the
methodology is found inside the ROV BizStats module located at Risk Simulator | ROV~
BizStats | Neural Network as well as in Risk Sinmlator | Forecasting | Neural Network. Figure 5.56
shows the Neural Network forecast methodology.

o (lick on Risk Simmulator

Forecasting | Neural Network.

e  Start by either manually entering data or pasting some data from the clipboard (e.g.,
select and copy some data from Excel, start this tool, and paste the data by clicking on
the Paste button).

e Select if you wish to run a Linear or Nonlinear Neural Nenvork model, enter in the
desired number of Forecast Periods (e.g., 5), the number of hidden Layers in the
Neural Network (e.g., 3), and number of Testing Periods (e.g., 5).

e Click Rz to execute the analysis and review the computed results and charts. You can
also Cipy the results and chart to the clipboard and paste it in another software
application.

Note that the number of hidden layers in the network is an input parameter and will need to be
calibrated with your data. Typically, the more complicated the data pattern, the higher the
number of hidden layers you would need and the longer it would take to compute. It is
recommended that you start at 3 layers. The testing period is simply the number of data points
used in the final calibration of the Neural Network model, and we recommend using at least
the same number of periods you wish to forecast as the testing period.

In contrast, the term fuzzy logic is derived from fuzzy set theory to deal with reasoning that is
approximate rather than accurate—as opposed to crisp logic, where binaty sets have binary
logic, fuzzy logic variables may have a truth value that ranges between 0 and 1 and is not
constrained to the two truth values of classic propositional logic. This fuzzy weighting schema
is used together with a combinatorial method to yield time-series forecast results in Risk
Simulator as illustrated in Figure 5.57, and is most applicable when applied to time-series data
that has seasonality and trend. This methodology is found inside the ROV BizStats module in
Risk Simulator, at Risk Simulator | ROV BizStats | Combinatorial Fuzgy Logic as well as in Risk
Simulator | Forecasting | Combinatorial Fuzgy Logie.

o Click on Risk Sinmulator | Forecasting | Combinatorial Fuzzy Logic.

e  Start by either manually entering data or pasting some data from the clipboard (e.g.,
select and copy some data from Excel, start this tool, and paste the data by clicking on
the Paste button)
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e Select the variable you wish to run the analysis on from the drop-down list, and enter
in the seasonality period (e.g., 4 for quarterly data, 12 for monthly data, etc.) and the
desired number of Forecast Periods (e.g., 5).

e  Click Rz to execute the analysis and review the computed results and charts. You can
also Copy the results and chart to the clipboard and paste it in another software
application.

Note that neither neural networks nor fuzzy logic techniques have yet been established as valid
and reliable methods in the business forecasting domain, on either a strategic, tactical, or
operational level. Much research is still required in these advanced forecasting fields.
Nonetheless, Risk Simulator provides the fundamentals of these two techniques for the
purposes of running time-series forecasts. We recommend that you do not use any of these
techniques in isolation, but, rather, in combination with the other Risk Simulator forecasting
methodologies to build more robust models.

::I Neural Network Forecast

-
Lo
STEP 1: Data Manually enter your data, paste from another application, or load an

example dataset with analysis

N | varz | varz  vars | vars | vars | var7 | vars | varo | vamwo | var1 ~
NOT... [

1 1 45011

2 |2 46071

3 |3 46034

4 |4 46068

5 |5 46083

6 |6 46168

7|7 46166

8 |s 46164

9 o 46597

0 10 46038 =
L T F

STEP 2: Choose analysis type, variable, and forecast period to run:

() Cosine with Hyperbolic Tangent

(@) Hyperbolic Tangent Layers: 3
() Linear
_ . Testing Periods: 210
Forecast Periods: 210
,m'm‘ Apply Multiphased Optimization
Sum of Squared Errors (Training) : 1.822044 -
RMSE (Training) : 0.093820 a
Sum of Squared Errors (Modified) : 59375.218349 b
RMSE (Modified) : 15.314349
Forecasting
*indicates negative values
Period Actual (¥) Forecast (F) Error (E)
211 581.5000 613.3528 *31.8528
212 584.2200 6513.5197 29,2997
213 589.7200 613.6203 *23.9003
214 590.5700 613.7188 *23.1488
215 583.4600 613.8520 *25.3920
218 586.3200 614.0608 =27.7408
217 591.7100 614, 2045 22,4546
218 593.2600 614.3029 *21.0429
219 592.7200 614.4223 21,7023
220 592.3000 614.5671 22,2671
221 589.2900 6514.7154 *25.4254
222 583.9600 5143963 20,9353
223 597.3400 514.9954 *17.6554
224 600.0700 515.0992 *15.0292
225 586.8500 15,2115 *18.3515 o

Figure 5.56 — Neural Network Forecast
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,
E Combinatorial Fuzzy Logic Forecast

—_ =)
STEP 1: Data Manually enter your data, paste from another application, or load an
. . aste
example dataset with analysis

N | VARL vARz | VAR | VAR4 | VARS | VARG | VART | VARS | VARO | VARI0 +
NOT.. '
1 [684.20

2 |58410

3 |765.40

4 |89230

5 |835.40

6 |677.00

7 |1006.60

B |112210

9 |116340

0 1993.20 2
(T G

STEP 2: Enter required inputs and select the variable to forecast
=
o)
Seasonality: By

Forecast Periods: Run

Results | Charts 10

Fesults RMSE @ 707.033452 -
Auto ARIMA RMSE : 245.485091 K
Time-5eries Auto RMSE @ 287.252763 |ﬂ
Trend Line Exponential RMSE ; 775, 403678

Trend Line Linear RMSE @ 912,616213

Trend Line Logarithmic RMSE : 1488.012692

Trend Line Moving Average RMSE @ 938,333906

Trend Line Polynomial RMSE @ 758,307610

Trend Line Power RMSE : 1268.660480

RESULTS

Forecast Fit

*indicates negative values

Period Actual (¥) Forecast (F) Error (E)
1 584,2000
2 584, 1000
3 755,4000
4 92,3000
5 385,4000 802.4434 82,9516
5] 677.0000 863.9179 *186.9179
7 1006,6000 9717020 34,8980 i
a 1197 1000 1R AN7R 2" 4072
< T |

Figure 5.57 — Fuzzy Logic Time-Series Forecast

5.24 Onrumu3arop roucKa 1eAn

The Goal Seek tool is a search algorithm applied to find the solution of a single variable within
a model. If you know the result that you want from a formula or a model, but are not sure what
input value the formula needs to get that result, use the Risk Sumulator | Tools | Goal Seek
feature. Note that Goal Seek works only with one variable input value. If you want to accept
more than one input value, use Risk Simulator’s advanced Optimization routines. Figure 5.58
shows how Goal Seek is applied to a simple model.
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| A3 - fe| =A12A2
A B C D E F G
1 100
2 200 ” .
3 LleneBoi Nnovck ogHOM NEpeEMEHHON u

YCTEHOBHTE AYERKY: IM_E Pesynetar:
K anauetmo: IE’-DD— 100.0000
[MyTeM n3MEHEHUA AUERKN: IM_E

Maars: I‘I— Make: IW

Makc. wrepaumi: W

2aKpeITE |

IoRN- RENRNC R S
w
o
=]

[y
o

ry
(Y

[
(S5 ]

Figure 5.58 — Goal Seck

5.25 Onramu3arop rOHCKa 11eAd

The Single Variable Optimizer tool is a search algorithm used to find the solution of a single
variable within a model, just like the goal seck routine discussed previously. If you want the
maximum or minimum possible result from a model but are not sure what input value the
formula needs to get that result, use the Risk Simulator | Tools | Single 1 ariable Optimizer feature
(Figure 5.59). Note that this tool runs very quickly but is only applicable to finding one variable
input. If you want to accept more than one input value, use Risk Simulator’s advanced
Optimization routines. Note that this tool is included in Risk Simulator because if you require a
quick optimization computation for a single decision variable, this tool provides that capability
without having to set up an optimization model with profiles, simulation assumptions, decision
variables, objectives, and constraints.

A3 - fe | =A1+A2
A B C D E F G H |
1 250
-
2 200 BricTpeilt oNTUMM3aTOp ANA OAHOM NepeMeHHOMN g
3 | 450'
| |
il Aueiika uenw: I.Pc.EIn EI & Makcummusuposate | MuUHMMWIMpOBATE
5 Aueiika nepemerHoi; I.P«'I EI Muan: |5D Makc: IZ&D
5]
7 [OonycTMMOE OTKNOHEHWE: ID.DDDDDDDD1 Make. wrepavmii: |1DDDDD
Cnmumusupoeattan nepementan; 250.0000 -
8 4 Ommena |
9 OnTuMuzuposattan wens: 450.0000 Z
10

Figure 5.59 — Single Variable Optimizer
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5.26 orrrrvmzanra 1 emermaeckoro aaropurma

Genetic Algorithms belong to the larger class of evolutionary algorithms that generate solutions
to optimization problems using techniques inspired by natural evolution, such as inheritance,
mutation, selection, and crossover. Genetic Algorithm is a search heuristic that mimics the
process of natural evolution and is routinely used to generate useful solutions to optimization
and search problems.

The genetic algorithm is available in Risk Sizulator | Tools | Genetic Algorithm (Figure 5.60). Care
should be taken in calibrating the model’s inputs as the results will be fairly sensitive to the
inputs (the default inputs are provided as a general guide to the most common input levels), and
it is recommended that the Gradient Search Test option be chosen for a more robust set of
results (you can deselect this option to get started and then select this choice, rerun the analysis,
and compare the results).

In many problems, genetic algorithms may have a tendency to converge towards local optima
or even arbitrary points rather than the global optimum of the problem. This means that it does
not know how to sacrifice short-term fitness to gain longer-term fitness. For specific
optimization problems and problem instances, other optimization algorithms may find better
solutions than genetic algorithms (given the same amount of computation time). Therefore, it is
recommended that you first run the Genetic Algorithm and then rerun it by selecting the Apply
Gradient Search Test option (Figure 5.00) to check the robustness of the model. This gradient
search test will attempt to run combinations of traditional optimization techniques with Genetic
Algorithm methods and return the best possible solution. Finally, unless there is a specific
theoretical need to use Genetic Algorithm, we recommend using Risk Simulator’s Optimization
module, which allows you to run more advanced risk-based dynamic and stochastic
optimization routines, for mote robust results.
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Figure 5.60 — Genetic Algorithm

5.27 ROV Moayas Aepesa Perrenrirt

5.27.1 AepeBo Penrenrii

Risk Sipmlator | ROV Decision T'ree rans the Decision Tree module (Figure 5.61). ROV Decision
Tree is used to create and value decision tree models. Additional advanced methodologies and
analytics are also included:

Decision Tree Models

Monte Catlo risk simulation

Sensitivity Analysis

Scenario Analysis

Bayesian (Joint and Posterior Probability Updating)
Expected Value of Information

MINIMAX

MAXIMIN

Risk Profiles
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The following are some main quick getting started tips and procedures for using this intuitive

tool:

There are 11 localized languages available in this module and the current language can
be changed through the Language menu.

Insert Option nodes or Insert Terminal nodes by first selecting any existing node and
then clicking on the option node icon (square) ot terminal node icon (triangle), or use
the functions in the Insert menu.

Modify individual Option Node or Terminal Node properties by double-clicking on a
node. Sometimes when you click on a node, all subsequent child nodes are also
selected (this allows you to move the entire tree starting from that selected node). If
you wish to select only that node, you may have to click on the empty background and
click back on that node to select it individually. Also, you can move individual nodes
or the entire tree started from the selected node depending on the current setting
(right-click, or in the Edit menu, and select Move Nodes Individually or Move Nodes
Together).

The following are some quick descriptions of the things that can be customized and
configured in the node properties user interface. It is simplest to try different settings
for each of the following to see its effects in the Strategy Tree:

0 Name. Name shown above the node.

Value. Value shown below the node.

Excel Link. Links the value from an Excel spreadsheet’s cell.
Notes. Notes can be inserted above ot below a node.

Show in Model. Show any combinations of Name, Value, and Notes.

O O O o o

Local Color versus Global Color. Node colors can be changed locally to a
node or globally.

O Label Inside Shape. Text can be placed inside the node (you may need to
make the node wider to accommodate longer text).

O Branch Event Name. Text can be placed on the branch leading to the node
to indicate the event leading to this node.

O  Select Real Options. A specific real option type can be assigned to the current
node. Assigning real options to nodes allows the tool to generate a list of
required input variables.

Global Elements are all customizable, including elements of the Strategy Tree’s
Background, Connection Lines, Option Nodes, Terminal Nodes, and Text Boxes. For
instance, the following settings can be changed for each of the elements:

O Font settings on Name, Value, Notes, Label, Event names.
O Node Size (minimum and maximum height and width).

O Borders (line styles, width, and color).
(0]

Shadow (colors and whether to apply a shadow or not).
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0 Global Colot.
O Global Shape.

e The Edit menu’s View Data Requirements Window command opens a docked
window on the right of the Strategy Tree such that when an option node or terminal
node is selected, the properties of that node will be displayed and can be updated
directly. This feature provides an alternative to double-clicking on a node each time.

e Example Files are available in the File menu to help you get started on building
Strategy Ttrees.

e  Protect File from the File menu allows the Strategy Tree to be encrypted with up to a
256-bit password encryption. Be careful when a file is being encrypted because if the
password is lost, the file can no longer be opened.

e  Capturing the Screen or printing the existing model can be done through the File
menu. The captured screen can then be pasted into other software applications.

e Add, Duplicate, Rename, and Delete a Strategy Tree can be performed through right-
clicking the Strategy Tree tab or the Edit menu.

¢ You can also Insert File Link and Insert Comment on any option or terminal node, or
Insert Text or Insert Picture anywhere in the background or canvas area.

¢ You can Change Existing Styles, or Manage and Create Custom Styles of your Strategy
Tree (this includes size, shape, color schemes, and font size/color specifications of the
entire Strategy Tree).

e Insert Decision, Insert Uncertainty, or Insert Terminal nodes by selecting any existing
node and then clicking on the decision node icon (square), uncertainty node icon
(circle), or terminal node icon (triangle), or use the functionalities in the Insert menu

e Modify individual Decision, Uncertainty, or Terminal nodes’ properties by double-
clicking on a node. The following are some additional unique items in the Decision
Tree module that can be customized and configured in the node properties user
interface:

O Decision Nodes: Custom Override or Auto Compute the value on a node.
The automatically compute option is set as default and when you click RUN
on a completed Decision Tree model, the decision nodes will be updated
with the results.

O Uncertainty Nodes: Event Names, Probabilities, and Set Simulation
Assumptions. You can add probability event names, probabilities, and
simulation assumptions only after the uncertainty branches are created.

O Terminal Nodes: Manual Input, Excel Link, and Set Simulation Assumptions.
The terminal event payoffs can be entered manually or linked to an Excel cell
(e.g., if you have a large Excel model that computes the payoff, you can link
the model to this Excel model’s output cell) or set probability disttibutional
assumptions for running simulations.

e View Node Properties Window is available from the Edit menu and the selected
node’s properties will update when a node is selected.
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e The Decision Tree module also comes with the following advanced analytics:
0 Monte Carlo Simulation Modeling on Decision Trees
O Bayes Analysis for obtaining postetior probabilities

O Expected Value of Perfect Information, MINIMAX and MAXIMIN
Analysis, Risk Profiles, and Value of Imperfect Information

O Sensitivity Analysis
O  Scenatio Analysis
0 Utlity Function Analysis

5.27.2 Camyaarusroe MoseanpoBanme

This tool runs Monte Carlo risk simulation on the decision tree (Figure 5.62). It allows you to
set probability distributions as input assumptions for running simulations. You can either set an
assumption for the selected node or set a new assumption and use this new assumption (or use
previously created assumptions) in a numerical equation or formula. For example, you can set a
new assumption called Normal (e.g., normal distribution with a mean of 100 and standard
deviation of 10) and run a simulation in the decision tree, or use this assumption in an equation
such as (100*Normal+15.25).

Create your own model in the numerical expression box. You can use basic computations or
add existing variables into your equation by double-clicking on the list of existing variables.
New variables can be added to the list as required either as numerical expressions or
assumptions.

5.27.3 bariecoBckuri Aaasu3

This Bayesian analysis tool (Figure 5.63) can be used on any two uncertainty events that are
linked along a path. For instance, in the example on the right (Figure 5.63), uncertainties A and
B are linked, where event A occurs first in the timeline and event B occurs second. First Event
A is Market Research with 2 outcomes (Favorable or Unfavorable). Second Event B is Market
Conditions also with 2 outcomes (Strong and Weak). This tool is used to compute joint,
marginal, and Bayesian postetior updated probabilities by entering the prior probabilities and
reliability conditional probabilities; or reliability probabilities can be computed when you have
posterior updated conditional probabilities. Select the relevant analysis desired below and click
on Load Example to see the sample inputs corresponding to the selected analysis and the
results shown in the grid on the right, as well as which results are used as inputs in the decision
tree in the figure.

e STEP 1: Enter the names for the first and second uncertainty events and choose how
many probability events (states of nature or outcomes) each event has.

e STEP 2: Enter the names of each probability event or outcome.

e STEP 3: Enter the second event's prior probabilities and the conditional probabilities
for each event or outcome. The probabilities must sum to 100%.
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5.27.4 O>rxmpsaemoe 3HAYEHHE HACAABHOH HHOopMarmm, Minimax o
Maximin Araans, Ilpogprarposanme Prucka o croumocrs
HECOBEPIIICHCTBA HHQOPMAITHH

This tool (Figure 5.64) computes the Expected Value of Perfect Information (EVPI),
MINIMAX and MAXIMIN Analysis, as well as the Risk Profile and the Value of Imperfect
Information. To get started, enter the number of decision branches or strategies under
consideration (e.g., build a large, medium, or small facility), the number of uncertain events or
states of nature outcomes (e.g., good market, bad market), and the expected payoffs under each
scenatio.

The Expected Value of Perfect Information (EVPI), that is, assuming you had perfect foresight
and knew exactly what to do (through market research or other means to better discern the
probabilistic outcomes), computes if there is added value in such information (i.e., if market
research will add value) as compared to more naive estimates of the probabilistic states of
nature. To get started, enter the number of decision branches or strategies under consideration
(e.g., build a large, medium, or small facility) and the number of uncertain events or states of
nature outcomes (e.g., good market, bad market), and enter the expected payoffs under each
scenario.

MINIMAX (minimizing the maximum regret) and MAXIMIN (maximizing the minimum
payoff) are two alternate approaches to finding the optimal decision path. These two
approaches are not used often but still provide added insight into the decision-making process.
Enter the number of decision branches or paths that exist (e.g., building a large, medium, or
small facility), as well as the uncertainty events or states of nature under each path (e.g., good
economy vs. bad economy). Then, complete the payoff table for the various scenarios and
Compute the MINIMAX and MAXIMIN results. You can also click on Load Example to see
a sample calculation.

5.27.5 UyBcTBHTEABHOCTD

Sensitivity analysis (Figure 5.65) on the input probabilities is performed to determine the impact
of inputs on the values of decision paths. First, select one Decision Node to analyze below, and
then select one probability event to test from the list. If there are multiple uncertainty events
with identical probabilities, they can be analyzed either independently or concurrently.

The sensitivity charts show the values of the decision paths under varying probability levels.
The numerical values are shown in the results table. The location of crossover lines, if any,
represents at what probabilistic events a certain decision path becomes dominant over another.

5.27.6 Tabaurrsr crreHapres

Scenario tables (Figure 5.66) can be generated to determine the output values given some
changes to the input. You can choose one or more Decision paths to analyze (the results of
each path chosen will be represented as a separate table and chart) and one or two Uncertainty
or Terminal nodes as input variables to the scenario table.
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e Select one or more Decision paths to analyze from the list below.
e Select one or two Uncertainty Events or Terminal Payoffs to model.

e Decide if you wish to change the event's probability on its own or all identical
probability events at once.

e  Enter the input scenario range.

5.27.7 I'emeprpoBanme yTHAHTAPHOH DyHKIHH

Utility functions (Figure 5.67), or U(x), are sometimes used in place of expected values of
terminal payoffs in a decision tree. U(x) can be developed two ways: using tedious and detailed
experimentation of every possible outcome or an exponential extrapolation method (used
here). They can be modeled for a decision maker who is risk-averse (downsides are more
disastrous or painful than an equal upside potential), risk-neutral (upsides and downsides have
equal attractiveness), or tisk-loving (upside potential is more attractive). Enter the minimum
and maximum expected value of your terminal payoffs and the number of data points in
between to compute the utility curve and table.

If you had a 50:50 gamble where you cither earn $X or lose -$X/2 versus not playing and
getting a $0 payoft, what would this $X be? For example, if you are indifferent between a bet
where you can win $100 or lose -$50 with equal probability compared to not playing at all, then
your X is $100. Enter the X in the Positive Earnings box below. Note that the larger X is, the
less risk-averse you are, whereas a smaller X indicates that you are more risk-averse.

Enter the required inputs, select the U(x) type, and click Compute Utility to obtain the results.
You can also apply the computed U(x) values to the decision tree to re-run it, or revert the tree
back to using expected values of the payoffs.
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Figure 5.61 — ROV Decision Tree (Decision Ttree)
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Figure 5.63 — ROV Decision Tree (Bayes Analysis)
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Figure 5.64 — ROV Decision Tree (EVPI, MINIMAX, Risk Profile)
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Figure 5.65 — ROV Decision Tree (Sensitivity Analysis)
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Figure 5.67 — ROV Decision Tree (Utllity Functions)
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6. NMone3Hble coBetbI M
npuemMsl

The following are some quick helpful tips and shortcut techniques for advanced users of Risk
Simulator. For details on using specific tools, refer to the relevant sections in this user manual.

COBETDBI: Ilpeanososxenns (YCTAHOBKA BXOAHBIX AA4HHBIX H
HHTEpPGhEFiCa IT0AB30BaTEAS)

e Quick Jump—select any distribution and type in any letter and it will jump to the first
distribution starting with that letter (e.g., click on Normal and type in W and it will take
you to the Weibull distribution).

e Right-Click Views—select any distribution, right-click, and select the different views of
the distributions (large icons, small icons, list).

e Tab to Update Charts—after entering some new input parameters (e.g., you type in a
new mean or standard deviation value), hit TAB on the keyboard or click anywhere on
the user interface away from the input box to see the distributional chart automatically
update.

e Enter Correlations—enter pairwise correlations directly here (the columns are
resizable as needed), use the multiple distributional fitting tool to automatically
compute and enter all pairwise correlations, or, after setting some assumptions, use the
edit correlation tool to enter your correlation mattix.

e  Equations in an Assumption Cell—only empty cells or cells with static values can be
set as assumptions; however, there might be times when a function or equation is
required in an assumption cell, and this can be done by first enteting the input
assumption in the cell and then typing in the equation or function (when the
simulation is being run, the simulated values will replace the function, and after the
simulation completes, the function or equation is again shown).

COBETBI: konnpoBaHme H BCTABKA

e Copy and Paste using Escape—when you select a cell and use the Risk Simulator
Copy function, it copies everything into Windows clipboard, including the cell’s value,
equation, function, color, font, and size, as well as Risk Simulator assumptions,
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forecasts, or decision variables. Then, as you apply the Risk Simulator Paste function,
you have two options. The first option is to apply the Risk Simulator Paste directly,
and all cell values, color, font, equation, functions and parameters will be pasted into
the new cell. The second option is to first click Escape on the keyboard, and then
apply the Risk Simulator Paste. Escape tells Risk Simulator that you wish to paste only
the Risk Simulator assumption, forecast, or decision vatiable, and not the cell’s values,
color, equation, function, font, and so forth. Hitting Escape before pasting allows you
to maintain the target cell's values and computations, and pastes only the Risk
Simulator parameters.

Copy and Paste on Multiple Cells—select multiple cells for copy and paste (with
contiguous and noncontiguous assumptions).

COBETADI: Koppessarmm

Set Assumption—set pairwise correlations using the set input assumption dialog (ideal
for entering only several correlations).

Edit Correlations—set up a correlation matrix by manually enteting or pasting from
Windows clipboard (ideal for large correlation matrices and multiple correlations).

Multiple Distributional ~ Fitting—automatically computes and enters pairwise
correlations (ideal when performing multiple variable fitting to automatically compute
the correlations for deciding what constitutes a statistically significant correlation).

COBETBI: AuarHoCTHKA AAHHBIX H CTATHCTHYECKHH AHAAU3

Stochastic Parameter Estimation—in the Statistical Analysis and Data Diagnostic
reportts, there is a tab on stochastic parameter estimations that estimates the volatility,
drift, mean-reversion rate, and jump-diffusion rates based on historical data. Be aware
that these parameter results are based solely on historical data used, and the parameters
may change over time and depending on the amount of fitted historical data. Further,
the analysis results show all parameters and do not imply which stochastic process
model (e.g., Brownian Motion, Mean-Reversion, Jump-Diffusion, or mixed process) is
the best fit. It is up to the user to make this determination depending on the time-
seties variable to be forecasted. The analysis cannot determine which process if best;
only the user can do this (e.g., Brownian Motion process is best for modeling stock
prices, but the analysis cannot determine that the historical data analyzed is from a
stock or some other variable, and only the user will know this). Finally, a good hint is
that if a certain parameter is out of the normal range, the process requiring this input
parameter is most probably not the correct process (e.g., if the mean-reversion rate is
110%, chances are, mean-reversion is not the correct process).

COBETBI: AwncrpubyruBHpIH  aHAAH3, Ipaghurku H  TAOAHIBI

BEPOATHOCTEH

Distributional Analysis—used to quickly compute the PDF, CDF, and ICDF of the
42 probability distributions available in Risk Simulator, and to return a table of these

values.

Distributional Charts and Tables—used to compare different parameters of the same
distribution (e.g., takes the shapes and PDF, CDF, ICDF values of a Weibull
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distribution with Alpha and Beta of [2, 2], [3, 5], and [3.5, 8] and ovetlays them on top
of one another).

Overtlay Charts—used to compare different distributions (theoretical input
assumptions and empirically simulated output forecasts) and overlay them on top of
one another for a visual compatison.

COBETDI: Kpusas 9¢gpgpexruBHOCTH

e FEfficient Frontier Variables—to access the frontier variables, first set the model’s
Constraints before setting efficient frontier variables.
COBETDI: Kaerxw Ilporrosos

Forecast Cells with No Equations—you can set output forecasts on cells without any
equations or values (simply ignore the warning message) but be aware that the
resulting forecast chart will be empty. Output forecasts are typically set on empty cells
when there are macros that are being computed and the cell will be continually
updated.

COBETBI: Yaprsr Ilporaosos

TAB versus Spacebar—hit TAB on the keyboard to update the forecast chart and to
obtain the percentile and confidence values after you enter some inputs, and hit the
Spacebar to rotate among the vatious tabs in the forecast chart.

Normal versus Global View—<click on these views to rotate between a tabbed
interface and a global interface where all elements of the forecast charts are visible at
once.

Copy—copies the forecast chart or the entire global view depending on whether you
are in the normal or global view.

COBETADI: IlporaosupoBanrme

Cell Link Address—if you first select the data in the spreadsheet and then run a
forecasting tool, the cell address of the selected data will be automatically entered into
the user interface Otherwise, you will have to manually enter in the cell address or use
the link icon to link to the relevant data location.

Forecast RMSE—use as the universal error measure on multiple forecast models for
direct comparisons of the accuracy of each model.

COBETDI: nporaosuposaxnue: ARIMA

Forecast Periods—the number of exogenous data rows has to exceed the time-seties
data rows by at least the desired forecast periods (e.g., if you wish to forecast 5 periods
into the future and have 100 time-seties data points, you will need to have at least 105
or more data points on the exogenous variable). Otherwise, just run ARIMA without
the exogenous variable to forecast as many periods as you wish without any
limitations.
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COBETDI: nporaosuposanne: bazopas saxkonomerprka

Variable Separation with Semicolons—separate independent variables using a
semicolon.

COBETDI: nporao3upoBaHHe: AOTHT, IPOOHT, H TOOHT

Data Requitements—the dependent variables for running logit and probit models
must be binary only (0 and 1), whereas the Tobit model can take binary and other
numerical decimal values. The independent variables for all three models can take any
numerical value.

COBETDI: nporHo3upOoBaHHE: CAyYAHHBIE IPOLIECCHI

Default Sample Inputs—when in doubt, use the default inputs as a starting point to
develop your own model.

Statistical Analysis Tool for Parameter Estimation—use this tool to calibrate the input
parameters into the stochastic process models by estimating them from your raw data.

Stochastic Process Model—sometimes if the stochastic process user interface hangs
for a long time, chances are your inputs are incorrect and the model is not cotrectly
specified (e.g., if the mean-reversion rate is 110%, mean-reversion is probably not the
correct process). Try with different inputs or use a different model.

COBETBI: nporaosupoBanme: TpeHA rpaghrra (KpuBoH)

Forecast Results—scroll to the bottom of the report to see the forecasted values.

COBETDI: Brersos ¢pyaxrmri

RS Functions—there are functions that you can use inside your Excel spreadsheet to
set input assumption and get forecast statistics. To use these functions, you need to
first install RS Functions (which include Start, Programs, Real Options Valuation, Risk
Simulator, Tools, and Install Functions) and then run a simulation before setting the
RS functions inside Excel. Refer to the example model 24 for examples on how to use
these functions.

COBETDI: Ilpucrymaa k pabore. YIpaKHEHHA H HAYAAO pPabOTBI
(BHACOMAaTEpHAABL)

Getting Started Exercises—there are multiple step-by-step hands-on examples and
results interpretation exercises available in the Start, Programs, Real Options
Valuation, Risk Simulator shortcut location. These exercises are meant to quickly get
you up to speed with the use of the software.

Getting Started Videos—these are all available for free on our website:
www.realoptionsvaluation.com/download.html or
www.rovdownloads.com/download . html.
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COBETBI: Hardware ID

e Right-Click HWID Copy—in the Install License user interface, select or double-click
on the HWID to select its value, right-click to copy or click on the E-mail HWID link
to generate an e-mail with the HWID.

e  Troubleshooter—run the Troubleshooter from the Start, Programs, Real Options
Valuation, Risk Simulator folder, and run the Get HWID tool to obtain your
computer’s HWID.

COBETDBI: Meros Aarmackmii runepkyba Beroopku (LHS) o
cpasaenmro ¢ Mourre-Kapao (MCYS)

e Correlations—when setting pairwise correlations among input assumptions, we
recommend using the Monte Carlo setting in the Risk Simulator Options menu. Latin
Hypercube Sampling is not compatible with the correlated copula method for
simulation.

e LHS Bins—a larger number of bins will slow down the simulation while providing a
more uniform set of simulation results.

¢ Randomness—all of the random simulation techniques in the Options menu have
been tested and are all good simulators and approach the same levels of randomness
when larger number of trials are run.

COBETBI: Hurepaer-pecypcsr

e Books, Getting Started Videos, Models, White Papers—tesources available on our
website: www.realoptionsvaluation.com/download.html or
www.rovdownloads.com/download.html.

COBETDBI: Oarayvr3anrra

e Infeasible Results—if the optimization run returns infeasible results, you can change
the constraints from an Equal (=) to an Inequality (>= or <=) and try again. This also
applies when you are running an efficient frontier analysis.

COBETAHI: [pogran

e Multiple Profiles—create and switch among multiple profiles in a single model. This
allows you to run scenarios on simulation by being able to change input parameters or
distribution types in your model to see the effects on the results.

e  Profile Required—Assumptions, Forecasts, or Decision Variables cannot be created if
there is no active profile. However, once you have a profile, you no longer have to
keep creating new profiles each time. In fact, if you wish to run a simulation model by
adding additional assumptions or forecasts, you should keep the same profile.

e Active Profile—the last profile used when you save Excel will be automatically opened
the next time the Excel file is opened.

e  Multiple Excel Files—when switching between several opened Excel models, the
active profile will be from the current and active Excel model.
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Cross Workbook Profiles—be careful when you have multiple Excel files open
because if only one of the Excel files has an active profile and you accidentally switch
to another Excel file and set assumptions and forecasts on this file, the assumptions
and forecast will not run and will be invalid.

Deleting Profiles—you can clone existing profiles and delete existing profiles, but note
that at least one profile must exist in the Excel file if you delete profiles.

Profile Location—the profiles you create (containing the assumptions, forecasts,
decision variables, objectives, constraints, etc.) are saved as an encrypted hidden

worksheet. This is why the profile is automatically saved when you save the Excel
workbook file.

COBETBI: Coyeranma KAABHIII H MEHFO IPABOH KHOIIKOH MBIIIIH

e Right-Click—you can open the Risk Simulator shortcut menu by right-clicking on a
cell anywhere in Excel.
COBETDI: Coxpannurs

Saving the Excel File—saves the profile settings, assumptions, forecasts, decision
variables, and your Excel model (including any Risk Simulator reportts, chatts, and data
extracted).

Saving the Chart Settings—saves the forecast chart settings such that the same settings
can be recovered and applied to future forecast charts (use the save and open icons in
the forecast charts).

Saving and Extracting Simulated Data in Excel—extracts a simulated run’s
assumptions and forecasts; the Excel file itself will still have to be saved in order to
save the data for retrieval later.

Saving Simulated Data and Charts in Risk Simulator—using the Risk Simulator Data
Extract and saving to a *RiskSim file will allow you to reopen the dynamic and live
forecast chart with the same data in the future without having to rerun the simulation.

Saving and Generating Reports—simulation reports and other analytical reports are
extracted as separate worksheets in your workbook, and the entire Excel file will have
to be saved in order to save the data for future retrieval later.

COBETBI: Or60p rpob u METOABI MOACAHPOBAHHUA

Random Number Generator—there are six supported random number generators
(see the user manual for details) and, in general, the ROV Risk Simulator default
method and the Advanced Subtractive Random Shuffle method are the two
recommended approaches to use. Do not apply the other methods unless your model
or analytics specifically calls for their uses, and, even then, we recommended testing
the results against these two recommended approaches.

COBETHBI: Software Development Kit (SDK) i DLL-6n6anorexu

SDK, DLL, and OEM—all of the analytics in Risk Simulator can be called outside of
this software and integrated in any user proprietary software. Contact
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admin@realoptionsvaluation.com for details on using our Software Development Kit
to access the Dynamic Link Library (DLL) analytics files.

COBETBI: Haunnxas paboty c Risk Simulator B Excel

ROV Troubleshooter—run this troubleshooter to obtain your computer’s HWID for

licensing purposes, to view your computer settings and prerequisites, and to re-enable
Risk Simulator if it has been accidentally disabled.

Start Risk Simulator when Excel Starts—you can let Risk Simulator start automatically
when Excel starts each time or start it manually from the Start, Programs, Real
Options Valuation, Risk Simulator shortcut location. This preference can be set in the
Risk Simulator, Options menu.

COBETBI: MosaeanpoBaHue HA CBEPXCKOPOCTAX

Model Development—if you wish to run super speed in your model, test run a few
super speed simulations while the model is being constructed to make sure that the
final product will run the super speed simulation. Do not wait until the final model is
complete before testing super speed to avoid having to backtrack to identify where any
broken links or incompatible functions exist.

Regular Speed—when in doubt, regular speed simulation always works.

COBETDI: Araans TopHaso

Tornado Analysis—the tornado analysis should never be run just once. It is meant as a
model diagnostic tool, which means that it should ideally be run several times on the
same model. For instance, in a large model, Tornado can be run the first time using all
of the default settings and all precedents should be shown (select Show All Variables).
This single analysis may result in a large report and long (and potentially unsightly)
Tornado charts. Nonetheless, it provides a great starting point to determine how many
of the precedents are considered critical success factors. For example, the Tornado
chart may show that the first 5 variables have high impact on the output, while the
remaining 200 variables have little to no impact, in which case, a second tornado
analysis is run showing fewer variables. For the second run, select Show Top 10
Variables if the first 5 are critical, thereby creating a nice report and a Tornado chart
that shows a contrast between the key factors and less critical factors. (You should
never show a Tornado chart with only the key variables without showing some less
critical variables as a contrast to their effects on the output.)

Default Values—the default testing points can be increased from the £10% value to
some larger value to test for nonlinearities (the Spider chart will show nonlinear lines
and Tornado charts will be skewed to one side if the precedent effects are nonlinear).

Zero Values and Integers—inputs with zero or integer values only should be
deselected in the Tornado analysis before it is run. Otherwise, the percentage
perturbation may invalidate your model (e.g,, if your model uses a lookup table where
Jan =1, Feb = 2, Mar = 3, etc., perturbing the value 1 at a £10% value yields 0.9 and
1.1, which makes no sense to the model).

Chart Options—try various chart options to find the best options to turn on or off for
your model.
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COBETDI: YcrpaHneHnne HEITOAAAOK

e ROV Troubleshooter—run this troubleshooter to obtain your computer’s HWID for

licensing purposes, to view your computer settings and prerequisites, and to re-enable
Risk Simulator if it has been accidentally disabled.
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uniform, 6, 11, 33, 37, 39, 62, 103, 112, 128, 188

Uniform, 17, 39, 62

upper, 103, 112

validity of, 80, 140

value, 5, 8, 14, 17, 19, 23, 24, 26, 28, 29, 31, 33, 34, 36, 37, 38, 39, 45, 46, 47, 48, 50, 51, 53, 54,
55, 56, 57, 59, 60, 61, 62, 63, 64, 67, 68, 69, 72, 80, 82, 90, 91, 96, 103, 107, 110, 112,
115, 117, 119, 120, 123, 126, 128, 132, 133, 139, 140, 141, 142,143, 144, 148, 149, 150,
151, 156, 167, 170, 172, 173, 175, 177, 178, 179, 184, 187, 188, 191

values, 11, 14, 15, 19, 20, 21, 23, 24, 25, 27, 28, 33, 36, 37, 45, 46, 48, 51, 54, 55, 56, 59, 61, 62,
66, 67, 68, 69, 71, 78, 80, 82, 83, 90, 95, 96, 98, 99, 100, 101, 102, 103, 104, 107, 109,
112, 117, 119, 123, 128, 135, 136, 139, 140, 141, 144, 148, 149, 151, 155, 156, 158, 163,
170, 179, 180, 184, 185, 186, 187, 191

variance, 31, 32, 47, 51, 54, 57, 61, 75, 94, 115, 135, 138, 139, 144
volatility, 7, 12, 67, 78, 91, 142, 185

Weibull, 6, 63, 64, 126, 163, 184, 186

Yes/No, 38
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